Previous |  Up |  Next

Article

Keywords:
inertial term; forward-backward splitting; inclusion problem; strong convergence; Banach space
Summary:
We propose a Halpern-type forward-backward splitting with inertial extrapolation step for finding a zero of the sum of accretive operators in Banach spaces. Strong convergence of the sequence of iterates generated by the method proposed is obtained under mild assumptions. We give some numerical results in compressed sensing to validate the theoretical analysis results. Our result is one of the few available inertial-type methods for zeros of the sum of accretive operators in Banach spaces.
References:
[1] Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9 (2001), 3-11. DOI 10.1023/A:1011253113155 | MR 1845931 | Zbl 0991.65056
[2] Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions. Available at https://hal.archives-ouvertes.fr/hal-01782016 (2018), Hal ID: 01782016, 35 pages. MR 4026592
[3] Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et $n$-cycliquement monotones. Isr. J. Math. 26 French (1977), 137-150. DOI 10.1007/BF03007664 | MR 0500279 | Zbl 0352.47023
[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 (2009), 183-202. DOI 10.1137/080716542 | MR 2486527 | Zbl 1175.94009
[5] Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (2014). MR 3587745 | Zbl 1325.65001
[6] Boţ, R. I., Csetnek, E. R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1 (2016), 29-49. MR 3477895 | Zbl 1337.90082
[7] Boţ, R. I., Csetnek, E. R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256 (2015), 472-487. DOI 10.1016/j.amc.2015.01.017 | MR 3316085 | Zbl 1338.65145
[8] Brézis, H., Lions, P.-L.: Produits infinis de résolvantes. Isr. J. Math. 29 (1978), 329-345 French. DOI 10.1007/BF02761171 | MR 0491922 | Zbl 0387.47038
[9] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20 (2004), 103-120. DOI 10.1088/0266-5611/20/1/006 | MR 2044608 | Zbl 1051.65067
[10] Chen, C., Chan, R. H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8 (2015), 2239-2267. DOI 10.1137/15100463X | MR 3404682 | Zbl 1328.65134
[11] Chen, G. H.-G., Rockafellar, R. T.: Convergence rates in forward-backward splitting. SIAM J. Optim. 7 (1997), 421-444. DOI 10.1137/S1052623495290179 | MR 1443627 | Zbl 0876.49009
[12] Chidume, C.: Geometric Properties of Banach Spaces and Nonlinear Iterations. Lecture Notes in Mathematics 1965, Springer, Berlin (2009). DOI 10.1007/978-1-84882-190-3 | MR 2504478 | Zbl 1167.47002
[13] Cholamjiak, P.: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces. Numer. Algorithms 71 (2016), 915-932. DOI 10.1007/s11075-015-0030-6 | MR 3479747 | Zbl 1342.47079
[14] Cholamjiak, P., Cholamjiak, W., Suantai, S.: A modified regularization method for finding zeros of monotone operators in Hilbert spaces. J. Inequal. Appl. 2015 (2015), Article ID 220, 10 pages. DOI 10.1186/s13660-015-0739-8 | MR 3367213 | Zbl 1338.47077
[15] Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. 20 (2018), Article ID 42, 17 pages. DOI 10.1007/s11784-018-0526-5 | MR 3764675 | Zbl 06858734
[16] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Mathematics and Its Applications 62, Kluwer Academic Publishers, Dordrecht (1990). DOI 10.1007/978-94-009-2121-4 | MR 1079061 | Zbl 0712.47043
[17] Combettes, P. L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16 (2009), 727-748. MR 2583892 | Zbl 1193.47067
[18] Combettes, P. L., Wajs, V. R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4 (2005), 1168-1200. DOI 10.1137/050626090 | MR 2203849 | Zbl 1179.94031
[19] Dong, Q., Jiang, D., Cholamjiak, P., Shehu, Y.: A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions. J. Fixed Point Theory Appl. 19 (2017), 3097-3118. DOI 10.1007/s11784-017-0472-7 | MR 3720497 | Zbl 06817792
[20] Dunn, J. C.: Convexity, monotonicity, and gradient processes in Hilbert space. J. Math. Anal. Appl. 53 (1976), 145-158. DOI 10.1016/0022-247X(76)90152-9 | MR 0388176 | Zbl 0321.49025
[21] Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29 (1991), 403-419. DOI 10.1137/0329022 | MR 1092735 | Zbl 0737.90047
[22] Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73 (1967), 957-961. DOI 10.1090/S0002-9904-1967-11864-0 | MR 0218938 | Zbl 0177.19101
[23] Haugazeau, Y.: Sur la minimisation des formes quadratiques avec contraintes. C. R. Acad. Sci., Paris, Sér. A 264 (1967), 322-324 French. MR 0215113 | Zbl 0149.36201
[24] Kazarinoff, N. D.: Analytic Inequalities. Holt, Rinehart and Winston, New York (1961). MR 0260957 | Zbl 0097.03801
[25] Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979), 964-979. DOI 10.1137/0716071 | MR 0551319 | Zbl 0426.65050
[26] López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 2012 (2012), Article ID 109236, 25 pages. DOI 10.1155/2012/109236 | MR 2955015 | Zbl 1252.47043
[27] Lorenz, D. A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51 (2015), 311-325. DOI 10.1007/s10851-014-0523-2 | MR 3314536 | Zbl 1327.47063
[28] Maingé, P.-E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 325 (2007), 469-479. DOI 10.1016/j.jmaa.2005.12.066 | MR 2273538 | Zbl 1111.47058
[29] Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives. Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French. MR 0298899 | Zbl 0215.21103
[30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155 (2003), 447-454. DOI 10.1016/S0377-0427(02)00906-8 | MR 1984300 | Zbl 1027.65077
[31] Passty, G. B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72 (1979), 383-390. DOI 10.1016/0022-247X(79)90234-8 | MR 0559375 | Zbl 0428.47039
[32] Pesquet, J.-C., Pustelnik, N.: A parallel inertial proximal optimization method. Pac. J. Optim. 8 (2012), 273-306. MR 2954380 | Zbl 1259.47080
[33] Polyak, B. T.: Some methods of speeding up the convergence of iterative methods. U.S.S.R. Comput. Math. Math. Phys. 4 (1967), 1-17 translation from Zh. Vychisl. Mat. Mat. Fiz. 4 1964 791-803. DOI 10.1016/0041-5553(64)90137-5 | MR 0169403 | Zbl 0147.35301
[34] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75 (1980), 287-292. DOI 10.1016/0022-247X(80)90323-6 | MR 0576291 | Zbl 0437.47047
[35] Rockafellar, R. T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), 877-898. DOI 10.1137/0314056 | MR 0410483 | Zbl 0358.90053
[36] Shehu, Y.: Iterative approximations for zeros of sum of accretive operators in Banach spaces. J. Funct. Spaces 2016 (2016), Article ID 5973468, 9 pages. DOI 10.1155/2016/5973468 | MR 3459658 | Zbl 1337.47096
[37] Shehu, Y., Cai, G.: Strong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87. DOI 10.1007/s13398-016-0366-3 | MR 3742991 | Zbl 06836237
[38] Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Optim. 14 (2018), 1595-1615. DOI 10.3934/jimo.2018023 | MR 3917875
[39] Sunthrayuth, P., Cholamjiak, P.: Iterative methods for solving quasi-variational inclusion and fixed point problem in $q$-uniformly smooth Banach spaces. Numer. Algorithms 78 (2018), 1019-1044. DOI 10.1007/s11075-017-0411-0 | MR 3827320 | Zbl 06916361
[40] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38 (2000), 431-446. DOI 10.1137/S0363012998338806 | MR 1741147 | Zbl 0997.90062
[41] Wei, L., Agarwal, R. P.: A new iterative algorithm for the sum of infinite $m$-accretive mappings and infinite $\mu_i$-inversely strongly accretive mappings and its applications to integro-differential systems. Fixed Point Theory Appl. 2016 (2016), Article ID 7, 22 pages. DOI 10.1186/s13663-015-0495-y | MR 3441542 | Zbl 1346.47071
[42] Xu, H.-K.: Inequalities in Banach spaces with applications. Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127-1138. DOI 10.1016/0362-546X(91)90200-K | MR 1111623 | Zbl 0757.46033
Partner of
EuDML logo