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Abstract. Consider a second-order elliptic boundary value problem in three dimensions
with locally smooth coefficients and solution. Discuss local superconvergence estimates for
the tensor-product finite element approximation on a regular family of rectangular meshes.
It will be shown that, by the estimates for the discrete Green’s function and discrete deriva-
tive Green’s function, and the relationship of norms in the finite element space such as
L
2-norms, W 1,∞-norms, and negative-norms in locally smooth subsets of the domain Ω,
locally pointwise superconvergence occurs in function values and derivatives.

Keywords: tensor-product finite element; local superconvergence; discrete Green’s func-
tion

MSC 2010 : 65N30

1. Introduction

There have been many studies concerned with superconvergence of finite element

methods in three dimensions (see [1]–[6], [8]–[16], [18]–[23], [25]). Most of them focus

on the global superconvergent properties. However, to obtain the global supercon-

vergent properties, it is necessary to satisfy two fundamental conditions: C-uniform

partition (or piecewise C-uniform partition) and highly smooth solution such as

u ∈ Wm+2,p (2 6 p 6 ∞). Obviously, it is difficult to possess these two conditions

in the whole domain Ω. Nevertheless, the above two conditions are easily satisfied

in the interior subset of Ω, which leads us to consider superconvergent properties in

interior subsets of Ω (so-called local superconvergent properties). Up to now, in fact,
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there have been some local superconvergence results to be stated (see [11], [22], [24]

as well as literatures cited by them). Recently, we began to study local estimates for

the three-dimensional finite element, and moreover, have made some progress.

In this paper, we will discuss and only focus on local superconvergence of the block

finite element in three dimensions. We shall use the letter C to denote a generic

constant which may not be the same in each occurrence and also use the standard

notations for the Sobolev spaces and their norms.

Consider then a real-valued second-order elliptic boundary value problem with

variable coefficients in a bounded domain Ω in R
3,

Lu ≡ −
3∑

i,j=1

∂j(aij(X)∂iu) + a0(X)u = f in Ω, u = 0 on ∂Ω.

It will be assumed that the coefficients of L are locally smooth and aij = aji, and

also that they satisfy the uniform ellipticity condition

3∑

i,j=1

aij(X)ξiξj > σ0

3∑

i=1

|ξi|2 ∀ (ξ1, ξ2, ξ3) ∈ R
3

with σ0 positive and locally independent of X .

The weak formulation of the above problem reads

(1.1)

{
Find u ∈ H1

0 (Ω) satisfying

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω),

where

a(u, v) ≡
∫

Ω

( 3∑

i,j=1

aij∂iu∂jv + a0uv

)
dxdy dz, (f, v) ≡

∫

Ω

fv dxdy dz.

Here ∂1u = ∂u/∂x, ∂2u = ∂u/∂y and ∂3u = ∂u/∂z, which are usual partial deriva-

tives. For a given direction l ∈ R
3 and |l| = 1, we denote by ∂lv(Z) the onesided

directional derivatives defined by

∂Z,lv(Z) = lim
|∆Z|→0

v(Z +∆Z)− v(Z)

|∆Z| , ∆Z = |∆Z|l.

To discretize problem (1.1), we assume that Ω is partitioned into a regular rectan-

gulation T h with mesh size h ∈ (0, 1) such that Ω =
⋃

e∈T h

ē. Further, we denote by
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Sh
0 (Ω) the tensor-product m-degree block finite element space. Thus, the discretiza-

tion of problem (1.1) is

{
Find uh ∈ Sh

0 (Ω) satisfying

a(uh, v) = (f, v) ∀ v ∈ Sh
0 (Ω).

To derive our main results, for each Z ∈ Ω we need yet to introduce a discrete Green’s

function Gh
Z ∈ Sh

0 (Ω) and a discrete derivative Green’s function ∂Z,lG
h
Z ∈ Sh

0 (Ω)

defined by

(1.2) a(v,Gh
Z) = v(Z) ∀ v ∈ Sh

0 (Ω)

and

(1.3) a(v, ∂Z,lG
h
Z) = ∂Z,lv(Z) ∀ v ∈ Sh

0 (Ω).

As for Gh
Z and ∂Z,lG

h
Z , we have (see [15]–[17])

|Gh
Z |h2,1 = O(|lnh|2/3),(1.4)

|∂Z,lG
h
Z |h2,1 = O(h−1),(1.5)

|∂Z,lG
h
Z |1,1 = O(|lnh|4/3),(1.6)

where |·|h2,1 =
∑

e∈T h

|·|2,1,e.

2. Several important lemmas

In this section, we will give some lemmas which will be used to derive our main

results.

Lemma 2.1. Suppose D ⊂⊂ D′ ⊂ Ω and the integer k > 0. Then we have

(2.1) ‖v‖0,D 6 Ch−k‖v‖−k,D′ ∀ v ∈ Sh
0 (Ω).

P r o o f. Set D̂ =
⋃
e
{e : e ∩ D 6= ∅, e ∈ T h}. For an element e ⊂ D̂ we define

a negative-norm as follows:

(2.2) ‖v‖−k,e = sup
ϕ∈C∞

0
(e)

|(v, ϕ)e|
‖ϕ‖k,e

.
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Further, we define an affine transformation by

F : X̃ ∈ ẽ −→ X = BX̃ + b ∈ e,

where ẽ is a standard element and B = (bij) is a matrix of order 3 × 3. We write

ϕ̃(X̃) = ϕ(F (X̃)) and ṽ(X̃) = v(F (X̃)). In addition, we have (see [24])

|w|k,p,e 6 C‖B−1‖k|detB|1/p|w̃|k,p,ẽ ∀ w̃ ∈ W k,p(ẽ).

Thus we get

(2.3) |ϕ|k,e 6 Ch3/2−k
e |ϕ̃|k,ẽ.

From (2.3), we obtain

‖ϕ‖2k,e =
k∑

i=0

|ϕ|2i,e 6 Ch3−2k
e

k∑

i=0

|ϕ̃|2i,ẽ = Ch3−2k
e ‖ϕ̃‖2k,ẽ,

namely,

(2.4) ‖ϕ‖k,e 6 Ch(3−2k)/2
e ‖ϕ̃‖k,ẽ.

By (2.4), the definition of the negative norm (2.2), and the equivalence of norms in

the finite-dimensional space, we have

‖v‖0,e 6 Ch3/2
e ‖ṽ‖0,ẽ 6 Ch3/2

e ‖ṽ‖−k,ẽ 6 Ch3/2
e sup

ϕ̃∈C∞

0
(ẽ)

|(ṽ, ϕ̃)ẽ|
‖ϕ̃‖k,ẽ

6 Ch3/2−3+(3−2k)/2
e sup

ϕ∈C∞

0
(e)

|(v, ϕ)e|
‖ϕ‖k,e

,

namely,

(2.5) ‖v‖0,e 6 Ch−k
e ‖v‖−k,e.

Thus, from (2.5) and 1 6 h/he 6 C0,

(2.6) ‖v‖2
0,D̂

=
∑

e

‖v‖20,e 6 Ch−2k
∑

e

‖v‖2−k,e.

For every ε > 0, choosing εe > 0 such that
∑
e
εe = ε, we have

(2.7) ‖v‖2−k,e − εe 6 |(v, ϕe)e|2, ϕe ∈ C∞
0 (e) and ‖ϕe‖k,e = 1.
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We write ω =
∑
e
(v, ϕe)eϕe ∈ C∞

0 (D′) and then

(2.8) (v, ω)D′ =
∑

e

|(v, ϕe)e|2.

Combining (2.6)–(2.8) yields

(2.9) ‖v‖2
0,D̂

6 Ch−2k((v, ω)D′ + ε) 6 Ch−2k(‖v‖−k,D′‖ω‖k,D′ + ε).

In addition,

‖ω‖2k,D′ =

∫

D′

∑

06s6k

∣∣∣∣
∑

e

(v, ϕe)e∇sϕe

∣∣∣∣
2

dX

=
∑

06s6k

∫

D′

∣∣∣∣
∑

e

(v, ϕe)e∇sϕe

∣∣∣∣
2

dX

=
∑

06s6k

∑

e

|(v, ϕe)e|2
∫

e

|∇sϕe|2 dX

=
∑

e

|(v, ϕe)e|2 = (v, ω)D′ 6 ‖v‖−k,D′‖ω‖k,D′ .

Thus,

(2.10) ‖ω‖k,D′ 6 ‖v‖−k,D′ .

When ε → 0, we have by (2.9) and (2.10)

‖v‖0,D̂ 6 Ch−k‖v‖−k,D′ .

Obviously, D ⊂ D̂, thus ‖v‖0,D 6 ‖v‖0,D̂ 6 Ch−k‖v‖−k,D′ . The proof of Lemma 2.1

is completed. �

Lemma 2.2. Suppose D ⊂⊂ D′ ⊂ Ω, d ≡ dist(∂D, ∂D′), and the boundary ∂D′

is smooth enough. Let the integer k > 0, aij ∈ W k+2,∞(D′), and χ ∈ Sh
0 (Ω) satisfy

a(χ, v) = 0 for all v ∈ Sh
0 (D

′). Then we have

(2.11) ‖χ‖−k,D 6 C(d)h‖χ‖1,D′ + C(d)‖χ‖−k−1,D′ .
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P r o o f. Choosing D1 such that D ⊂⊂ D1 ⊂⊂ D′, dist(∂D1, ∂D
′) = dist(∂D1,

∂D) = d/2, and µ ∈ C∞(Ω) satisfying suppµ ⊂⊂ D′ and µ|D1
= 1, and setting

χ̂ = µχ, we have by the a priori estimate

(2.12) ‖χ‖−k,D 6 ‖χ̂‖−k,D′ = sup
ϕ∈C∞

0
(D′)

|(ϕ, χ̂)D′ |
‖ϕ‖k,D′

6 C sup
w∈H

|a(w, χ̂)D′ |
‖w‖k+2,D′

,

where Lw = ϕ and w ∈ H ≡ Hk+2(D′) ∩ H1
0 (D

′). Similarly to the arguments of

Theorem 5.6 in [24], with the conditions of this lemma we get

(2.13) a(w, χ̂)D′ = a(ŵ, χ)D′ + ID′ = a(ŵ −Πŵ, χ)D′ + ID′ ,

where ŵ = µw and

ID′ =

∫

D′

3∑

i,j=1

(−∂j(χwaij∂iµ) + χ∂j(waij∂iµ) + χaij∂iw∂jµ) dxdy dz.

Since w ∈ H, we have

(2.14) |ID′ | =
∣∣∣∣
∫

D′

3∑

i,j=1

(χ∂j(waij∂iµ) + χaij∂iw∂jµ) dxdy dz

∣∣∣∣

6 C(d)‖χ‖−k−1,D′‖w‖k+2,D′ .

From (2.13) and (2.14), we obtain

(2.15) |a(w, χ̂)D′ | 6 C‖χ‖1,D′‖ŵ −Πŵ‖1,D′ + C(d)‖χ‖−k−1,D′‖w‖k+2,D′

6 C(d)h‖χ‖1,D′‖w‖k+2,D′ + C(d)‖χ‖−k−1,D′‖w‖k+2,D′ .

Combining (2.12) and (2.15) yields the result (2.11). The proof of Lemma 2.2 is

completed. �

Lemma 2.3. Suppose D′ ⊂ Ω and the boundary ∂D′ is smooth enough. Let

the integer k > 0, aij ∈ W k+2,∞(D′), and χ ∈ Sh
0 (Ω) satisfy a(χ, v) = 0 for all

v ∈ Sh
0 (D

′). For each D∗ and D∗∗ satisfying D∗ ⊂⊂ D∗∗ ⊂⊂ D′, we then have

(2.16) ‖χ‖1,∞,D∗ + ‖χ‖−k,D∗ 6 C(d)‖χ‖−k−1,D∗∗ ,

where d ≡ dist(∂D∗, ∂D∗∗).
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P r o o f. When k = 0, choosing D̃ such that D∗ ⊂⊂ D̃ ⊂⊂ D∗∗ and dist(∂D̃,

∂D∗∗) = dist(∂D̃, ∂D∗) = d/2, we have by similar arguments as for Theorem 5.6

in [24]

(2.17) ‖χ‖1,∞,D∗ 6 C(d)h‖χ‖0,D̃ + C(d)‖χ‖−1,D̃.

Combining (2.1) and (2.17) yields

(2.18) ‖χ‖0,D∗ 6 ‖χ‖1,∞,D∗ 6 C(d)‖χ‖−1,D∗∗ ,

which indicates, when k = 0, the result (2.16) holds. Next, when k = t, we suppose

the result (2.16) holds, namely,

(2.19) ‖χ‖1,∞,D∗ + ‖χ‖−t,D∗ 6 C(d)‖χ‖−t−1,D∗∗ .

We consider the case of k = t+1. Choosing {Di}t+2
i=0 such that D

∗ ⊂⊂ D̃ ⊂⊂ D0 ⊂⊂
D1 ⊂⊂ D2 ⊂⊂ . . . ⊂⊂ Dt+2 ⊂⊂ D∗∗, and dist(∂D̃, ∂D0) = dist(∂Di, ∂Di+1) =

d/(2(t+ 4)), i = 0, . . . , t+ 1, we have by (2.11) and (2.19)

(2.20) ‖χ‖−t−1,D̃ 6 C(d)h‖χ‖1,D0
+ C(d)‖χ‖−t−2,D0

6 C(d)h‖χ‖1,∞,D0
+ C(d)‖χ‖−t−2,D0

6 C(d)h‖χ‖−t−1,D1
+ C(d)‖χ‖−t−2,D1

.

Similarly,

(2.21) ‖χ‖−t−1,Di
6 C(d)h‖χ‖−t−1,Di+1

+ C(d)‖χ‖−t−2,Di+1
, i = 1, 2, . . . , t+ 1.

From (2.1), (2.20), and (2.21),

(2.22) ‖χ‖−t−1,D̃ 6 C(d)ht+2‖χ‖−t−1,Dt+2
+ C(d)‖χ‖−t−2,Dt+2

6 C(d)ht+2‖χ‖0,Dt+2
+ C(d)‖χ‖−t−2,Dt+2

6 C(d)‖χ‖−t−2,D∗∗ .

In addition, from (2.19) and (2.22),

(2.23) ‖χ‖1,∞,D∗ 6 C(d)‖χ‖−t−1,D̃ 6 C(d)‖χ‖−t−2,D∗∗ .

Thus, from (2.22) and (2.23),

‖χ‖1,∞,D∗ + ‖χ‖−t−1,D∗ 6 C(d)‖χ‖−t−2,D∗∗ ,

which shows, when k = t + 1, the result (2.16) holds. The proof of Lemma 2.3 is

completed. �
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Lemma 2.4. Suppose D ⊂⊂ D′ ⊂ Ω, d ≡ dist(∂D, ∂D′), and the boundary ∂D′

is smooth enough. Let the integer k > 0, aij ∈ W k+2,∞(D′), and χ ∈ Sh
0 (Ω) satisfy

a(χ, v) = 0 for all v ∈ Sh
0 (D

′). Then we have

‖χ‖0,D 6 C(d)‖χ‖−k−1,D′ ,(2.24)

‖χ‖1,∞,D 6 C(d)‖χ‖−k−1,D′ .(2.25)

P r o o f. Choosing {Di}k+1
i=1 such that D ⊂⊂ D1 ⊂⊂ D2 ⊂⊂ . . . ⊂⊂ Dk ⊂⊂

Dk+1 = D′, and dist(∂D, ∂D1) = dist(∂Di, ∂Di+1) = d/(k + 1), i = 1, . . . , k, we

have by (2.16)

‖χ‖1,∞,D 6 C(d)‖χ‖−1,D1
6 C(d)‖χ‖−2,D2

6 C(d)‖χ‖−3,D3

6 . . . 6 C(d)‖χ‖−k−1,D′ ,

which is the result (2.25). Obviously,

‖χ‖0,D 6 ‖χ‖1,∞,D.

Combined with (2.25), we immediately obtain the result (2.24). The proof of

Lemma 2.4 is completed. �

3. Locally pointwise superconvergence

In this section, we will give our main results on the locally pointwise superconver-

gence.

Theorem 3.1. Suppose D ⊂⊂ D′ ⊂ Ω and let uh be the tensor-product m-

degree block finite element approximation to the solution u of (1.1), and Πm the

corresponding interpolation operator. When u ∈ Wm+2,∞(D′) ∩H1
0 (Ω) and m > 1,

we have

(3.1) |uh −Πmu|1,∞,D 6 C(hm+1|lnh|4/3‖u‖m+2,∞,D′ + ‖u− uh‖−1,D′).

Especially, if the boundary ∂D′ is smooth enough and the integer k > 0, we then

have

(3.2) |uh −Πmu|1,∞,D 6 C(hm+1|lnh|4/3‖u‖m+2,∞,D′ + ‖u− uh‖−k−1,D′).
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P r o o f. Choose D′′ such that D ⊂⊂ D′′ ⊂⊂ D′, and take µ ∈ C∞(Ω) such that

suppµ ⊂⊂ D′, and µ|D′′ = 1. Set ũ = µu and ū = u − ũ. Thus, for each Z ∈ D we

have by the weak estimate of the first type (see [19]) and (1.6)

(3.3) |∂l(ũh −Πmũ)(Z)| = a(ũh −Πmũ, ∂Z,lG
h
Z) = a(ũ−Πmũ, ∂Z,lG

h
Z)

6 Chm+1‖ũ‖m+2,∞,D′ |∂Z,lG
h
Z |1,1

6 Chm+1|lnh|4/3‖u‖m+2,∞,D′.

Obviously, ū = 0 in D′′. For every v ∈ Sh
0 (D

′′) we have a(ūh − ū, v) = 0. Thus,

(3.4) a(ūh, v) = a(ū, v) = 0.

In addition, similarly to (2.17) we get

(3.5) ‖ūh‖1,∞,D 6 C(̺)h‖ūh‖0,D′′ + C(̺)‖ūh‖−1,D′′ ,

where ̺ ≡ dist(∂D, ∂D′′). From (2.1), (3.4), and (3.5),

(3.6) |ūh −Πmū|1,∞,D = |ūh|1,∞,D 6 Ch‖ūh‖0,D′′ + C‖ūh‖−1,D′′

6 C‖ūh‖−1,D′′ = C‖ū− ūh‖−1,D′′

6 C‖u− uh‖−1,D′′ + C‖ũ− ũh‖−1,D′′ .

In addition,

(3.7) ‖ũ− ũh‖−1,D′′ 6 ‖ũ− ũh‖0,D′′ 6 Chm+1‖ũ‖m+1,D′ 6 Chm+1‖u‖m+1,D′.

Combining (3.3), (3.6), and (3.7) yields the result (3.1). If the boundary ∂D′ is

smooth enough and the integer k > 0, similarly to the arguments of (3.1), we may

get by Lemma 2.4 the result (3.2). The proof of Theorem 3.1 is completed. �

Theorem 3.1 is concerning the case of m > 1. In fact, when m > 2, we have yet

the following superconvergent estimates.

Theorem 3.2. Suppose D ⊂⊂ D′ ⊂ Ω and let uh be the tensor-product m-

degree block finite element approximation to the solution u of (1.1), and Πm the

corresponding interpolation operator. When u ∈ Wm+2,∞(D′) ∩H1
0 (Ω) and m > 2,

we have

(3.8) |uh −Πmu|1,∞,D 6 C(hm+1‖u‖m+2,∞,D′ + ‖u− uh‖−1,D′).

Especially, if the boundary ∂D′ is smooth enough and the integer k > 0, we then

have

(3.9) |uh −Πmu|1,∞,D 6 C(hm+1‖u‖m+2,∞,D′ + ‖u− uh‖−k−1,D′).
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P r o o f. By the arguments of Theorem 3.1, we find that it is only needed to prove

(3.10) |ũh −Πmũ|1,∞,D 6 Chm+1‖u‖m+2,∞,D′.

In fact, for each Z ∈ D we have by the weak estimate of the second type (see [19])

and (1.5)

|∂l(ũh −Πmũ)(Z)| = a(ũh −Πmũ, ∂Z,lG
h
Z) = a(ũ− Πmũ, ∂Z,lG

h
Z)

6 Chm+2‖ũ‖m+2,∞,D′ |∂Z,lG
h
Z |2,1

6 Chm+1‖u‖m+2,∞,D′,

which leads to (3.10). Thus, the result (3.8) holds. If the boundary ∂D′ is smooth

enough and the integer k > 0, similarly to the arguments of (3.8), we may get by

Lemma 2.4 the result (3.9). The proof of Theorem 3.2 is completed. �

The above two theorems are about local superconvergence of derivatives. As for

function values, we have also the similar results.

Theorem 3.3. Suppose D ⊂⊂ D′ ⊂ Ω and let uh be the tensor-product m-

degree block finite element approximation to the solution u of (1.1), and Πm the

corresponding interpolation operator. When u ∈ Wm+2,∞(D′) ∩H1
0 (Ω) and m > 2,

we have

(3.11) |uh −Πmu|0,∞,D 6 C(hm+2|lnh|2/3‖u‖m+2,∞,D′ + ‖u− uh‖−1,D′).

Especially, if the boundary ∂D′ is smooth enough and the integer k > 0, we then

have

(3.12) |uh −Πmu|0,∞,D 6 C(hm+2|ln h|2/3‖u‖m+2,∞,D′ + ‖u− uh‖−k−1,D′).

R em a r k 3.1. Similarly to the arguments of Theorems 3.1 and 3.2, together

with (1.4), the results (3.11) and (3.12) will be proved.

R em a r k 3.2. As for the negative norms in the above theorems, we now give

their bounds. From the definition of the negative norm, we have ‖u− uh‖−k−1,D′ 6

‖u− uh‖−k−1,Ω. Thus, for each ϕ ∈ Hk+1(Ω) there exists an ϕ̃ ∈ Hk+3(Ω) ∩H1
0 (Ω)

such that

|(u− uh, ϕ)| = |a(u− uh, ϕ̃−Πmϕ̃)| 6 C‖u− uh‖1 ‖ϕ̃−Πmϕ̃‖1.
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Further, when m > 2 and 0 6 k 6 m−2, we have by the interpolation error estimate

the optimal approximation estimate and the a priori estimate

|(u − uh, ϕ)| 6 Chm+k+2‖u‖m+1‖ϕ̃‖k+3 6 Chm+k+2‖u‖m+1‖ϕ‖k+1.

Thus we have

‖u− uh‖−k−1,D′ 6 ‖u− uh‖−k−1,Ω 6 Chm+k+2‖u‖m+1, 0 6 k 6 m− 2.

When m = 1, we have

‖u− uh‖−1,D′ 6 ‖u− uh‖−1,Ω 6 C‖u− uh‖0,Ω 6 Ch2‖u‖2.

The above results show that the negative norms do not spoil the order of supercon-

vergence.

Using the results in Theorems 3.1–3.3 and the estimates for negative norms, we

easily obtain the corresponding superconvergence points and their estimates.

Let X∗ ∈ D be an interpolation point of the operator Πm. Then we have the

function value superconvergence estimate

(3.13) |(u− uh)(X
∗)| 6 Chm+2|lnh|2/3‖u‖m+2,∞,D′, m > 2.

In fact, when X∗ ∈ D is a zero-point of the antiderivative of the Legendre polynomial

of degree m, the superconvergent result (3.13) holds too.

In addition, let Y ∗ ∈ D be a stress good point of the operator Πm (usually

taking zero-point of the Legendre polynomial of degreem), thus we have the gradient

superconvergence estimates

(3.14) |∇(u− uh)(Y
∗)| 6 Chm+1|lnh|4/3‖u‖m+2,∞,D′, m > 1,

and

(3.15) |∇(u − uh)(Y
∗)| 6 Chm+1‖u‖m+2,∞,D′, m > 2.

R em a r k 3.3. The study of superconvergence at special points started with the

work by Douglas, Dupont, and Wheeler [7]. Later, many works on superconvergence

points have been given. For example, Schatz, Sloan, and Wahlbin [22] gave super-

convergence estimates on locally symmetric points. Lin and Zhang [14] pointed out

where are the natural superconvergence points in three-dimensional setting. How-

ever, our results in the present paper differ from the ones in [14] and [22]. The details

are as follows.
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(1) For function value superconvergence, [22] requires superconvergence points

being locally symmetric points, and moreover, the degree m of the finite element is

even. However, our results do not need these conditions. When the negative norm

‖u− uh‖−k−1,D′ is of the highest order O(h2m) with k = m− 2, the function value

convergence order at superconvergence points in [22] is O(hm+1+(m−1)/(m+1.5)|lnh|)
(m > 2 even) and O(hm+2|lnh|2/3) (m > 2 any integer) in the present paper.

(2) For derivative superconvergence, [22] still requires superconvergence points be-

ing locally symmetric points, and the degree m of the finite element is odd, which

are unnecessary in our paper. When the negative norm ‖u − uh‖−k−1,D′ is of the

highest order O(h2m) with k = m− 2, the derivative convergence order at supercon-

vergence points in [22] is O(hm+m/(m+2.5)|lnh|) (m > 2 odd) and O(hm+1) (m > 2

any integer) in the present paper. For m = 1, the former is O(h1+2/7|lnh|) and the
latter is O(h2|lnh|4/3).

In summary, our results are better than the ones in [22]. In addition, although [14]

also gave the same superconvergence points as the present paper, it did not show the

convergence order at these points.

E x am p l e 3.1. Consider the following Poisson equation:

{
−∆u = f in Ω = (0, 1)× (0, 1)× (0, 1),

u = 0 on ∂Ω,

where
f = (−ex(ey − (e− 1)y − 1)− ey(ex − (e− 1)x− 1)

+ π
2(ex − (e− 1)x− 1)(ey − (e− 1)y − 1)) sin(πz).

The true solution is

u = (ex − (e− 1)x− 1)(ey − (e− 1)y − 1) sin(πz).

Let uh be the tensor-product two-degree finite element approximation to u. Set

X∗ = (0.5, 0.5, 0.5) and

Y ∗ =
(3−

√
3

6
h,

3−
√
3

6
h,

3−
√
3

6
h
)
.

Obviously, X∗ is an interpolation point and Y ∗ is a zero-point of the Legendre poly-

nomial of degree 2 in Ω. Both of them are the function value superconvergence point

and the derivative superconvergence point, respectively. For simplicity, we consider

only the numerical results at X∗ and Y ∗. We solve Example 3.1 and obtain the

following numerical results:
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h |(u− uh)(X
∗)| |∂x(u− uh)(Y

∗)|
0.5 2.4184e− 004 6.4341e− 003

0.25 1.3204e− 005 4.9586e− 004

0.125 7.8025e− 007 5.3748e− 005

Table 3.1. Numerical results at superconvergence points on uniform meshes.

A c k n ow l e d g em e n t s. The authors would like to thank the reviewers for their

suggestions which led to improving the quality of the paper.
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