Previous |  Up |  Next

Article

Keywords:
Hake-variational McShane integral; variational McShane integral; Banach space; $m$-dimensional Euclidean space
Summary:
We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset $G$ of $m$-dimensional Euclidean space $\mathbb {R}^{m}$. It is a "natural" extension of the variational McShane integral (the strong McShane integral) from $m$-dimensional closed non-degenerate intervals to open and bounded subsets of $\mathbb {R}^{m}$. We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our integral to the study of the variational McShane integral. As an application, a full descriptive characterization of the Hake-variational McShane integral is presented in terms of the cubic derivative.
References:
[1] Piazza, L. Di: Variational measures in the theory of the integration in $\mathbb{R}^{m}$. Czech. Math. J. 51 (2001), 95-110. DOI 10.1023/A:1013705821657 | MR 1814635 | Zbl 1079.28500
[2] Piazza, L. Di, Musial, K.: A characterization of variationally McShane integrable Banach-space valued functions. Ill. J. Math. 45 (2001), 279-289. DOI 10.1215/ijm/1258138268 | MR 1849999 | Zbl 0999.28006
[3] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). MR 1681462 | Zbl 0924.28001
[4] Fremlin, D. H.: The generalized McShane integral. Ill. J. Math. 39 (1995), 39-67. DOI 10.1215/ijm/1255986628 | MR 1299648 | Zbl 0810.28006
[5] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals. Stud. Math. 92 (1989), 73-91. DOI 10.4064/sm-92-1-73-91 | MR 0984851 | Zbl 0681.28006
[6] Gordon, R. A.: The McShane integral of Banach-valued functions. Ill. J. Math. 34 (1990), 557-567. DOI 10.1215/ijm/1255988170 | MR 1053562 | Zbl 0685.28003
[7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Graduate Studies in Mathematics 4. AMS, Providence (1994). DOI 10.1090/gsm/004 | MR 1288751 | Zbl 0807.26004
[8] Kaliaj, S. B.: The new extensions of the Henstock-Kurzweil and the McShane integrals of vector-valued functions. Mediterr. J. Math. 15 (2018), Article ID 22, 16 pages. DOI 10.1007/s00009-018-1067-2 | MR 3746986 | Zbl 06860542
[9] Kaliaj, S. B.: Some remarks about descriptive characterizations of the strong McShane integral. (to appear) in Math. Bohem.
[10] Kurzweil, J., Schwabik, Š.: On the McShane integrability of Banach space-valued functions. Real Anal. Exchange 29 (2003-2004), 763-780. DOI 10.14321/realanalexch.29.2.0763 | MR 2083811 | Zbl 1078.28007
[11] McShane, E. J.: Unifed Integration. Pure and Applied Mathematics 107. Academic Press, Orlando (1983). MR 0740710 | Zbl 0551.28001
[12] Pfeffer, W. F.: Derivation and Integration. Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). DOI 10.1017/CBO9780511574764 | MR 1816996 | Zbl 0980.26008
[13] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration. Series in Real Analysis 10. World Scientific, Hackensack (2005). DOI 10.1142/9789812703286 | MR 2167754 | Zbl 1088.28008
[14] Skvortsov, V. A., Solodov, A. P.: A variational integral for Banach-valued functions. Real Anal. Exch. 24 (1999), 799-805. DOI 10.2307/44152997 | MR 1704751 | Zbl 0967.28007
[15] Thomson, B. S.: Derivates of interval functions. Mem. Am. Math. Soc. 93 (1991), 96 pages. DOI 10.1090/memo/0452 | MR 1078198 | Zbl 0734.26003
[16] Thomson, B. S.: Differentiation. Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. DOI /10.1016/B978-044450263-6/50006-3 | MR 1954615 | Zbl 1028.28001
[17] Wu, C., Xiaobo, Y.: A Riemann-type definition of the Bochner integral. J. Math. Study 27 (1994), 32-36. MR 1318255 | Zbl 0947.28010
Partner of
EuDML logo