[1] Atanassov, K. T.:
Remark on József Sándor and Florian Luca's theorem. C. R. Acad. Bulg. Sci. 55 (2002), 9-14.
MR 1938730 |
Zbl 1011.11007
[4] Dusart, P.:
Explicit inequalities for $\psi(X)$, $\theta(X)$, $\pi(X)$ and prime numbers. C. R. Math. Acad. Sci., Soc. R. Can. 21 (1999), 53-59 French.
MR 1697455 |
Zbl 0935.11002
[8] Erdős, P., Graham, R. L.:
Old and New Problems and Results in Combinatorial Number Theory. Monographs of L'Enseignement Mathématique 28. L'Enseignement Mathématique, Université de Genève, Genève (1980).
MR 0592420 |
Zbl 0434.10001
[11] Le, M.:
A conjecture concerning the Smarandache dual function. Smarandache Notion J. 14 (2004), 153-155.
MR 1650404 |
Zbl 1259.11011
[12] Luca, F.:
On a divisibility property involving factorials. C. R. Acad. Bulg. Sci. 53 (2000), 35-38.
MR 1777831 |
Zbl 0954.11008
[14] Moree, P., Roskam, H.:
On an arithmetical function related to Euler's totient and the discriminantor. Fibonacci Q. 33 (1995), 332-340.
MR 1341262 |
Zbl 0827.11002
[17] Sándor, J.:
On values of arithmetical functions at factorials I. Smarandache Notions J. 10 (1999), 87-94.
MR 1682453 |
Zbl 1115.11301
[18] Sándor, J.:
On certain generalizations of the Smarandache function. Smarandache Notions J. 11 (2000), 202-212.
MR 1764904
[19] Tenenbaum, G.:
Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies in Advanced Mathematics 46. Cambridge University Press, Cambridge (1995).
MR 1342300 |
Zbl 0831.11001