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Abstract. We define the Hake-variational McShane integral of Banach space valued func-
tions defined on an open and bounded subset G of m-dimensional Euclidean space Rm. It
is a “natural” extension of the variational McShane integral (the strong McShane integral)
from m-dimensional closed non-degenerate intervals to open and bounded subsets of Rm.
We will show a theorem that characterizes the Hake-variational McShane integral in terms
of the variational McShane integral. This theorem reduces the study of our integral to
the study of the variational McShane integral. As an application, a full descriptive char-
acterization of the Hake-variational McShane integral is presented in terms of the cubic
derivative.
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1. Introduction and preliminaries

In paper [4], Fremlin studies, in a σ-finite outer regular quasi-Radon measure

space, a method of integration of vector-valued functions, which is an essential gen-

eralization of the McShane process of integration (see [11]). The method involves

(infinite) McShane partitions which are formed by sequences of disjoint measurable

sets of finite measure. For a Banach-space valued function defined on a closed inter-

val endowed with the Lebesgue measure, the variational McShane integral has been

investigated in [17] by Wu and Xiaobo (who called the integral the strong McShane

integral). Wu and Xiaobo showed that a Banach-space valued function is variation-

ally McShane integrable if and only if it is Bochner integrable. Di Piazza and Musial
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have proved a surprising result that, in the case of an arbitrary (even finite) quasi-

Radon measure space, the class of variationally McShane integrable functions can be

significantly larger, see [2], Theorem 1.

In paper [8], the Hake-Henstock-Kurzweil and the Hake-McShane integrals are de-

fined. These are extensions of the Henstock-Kurzweil and the McShane integrals from

m-dimensional closed non-degenerate intervals to open and bounded subsets of Rm.

In this paper, we define the Hake-variational McShane integral which is an exten-

sion of the variational McShane integral from m-dimensional closed non-degenerate

intervals to open and bounded subsets of Rm. Our goal is not a generalization for

the sake of generalization. Indeed, Theorem 2.1 reduces the study of our integral to

the study of the variational McShane integral. As an application, a full descriptive

characterization of the Hake-variational McShane integral is presented in terms of

the cubic derivative, see Theorem 2.2.

Throughout this paper, X denotes a real Banach space with its norm ‖·‖. The

Euclidean space Rm is equipped with the maximum norm. Bm(t, r) denotes an open

ball in R
m with center t and radius r > 0. We denote by L(Rm) the σ-algebra

of Lebesgue measurable subsets of Rm and by λ the Lebesgue measure on L(Rm).

|A| denotes the Lebesgue measure of A ∈ L(Rm). G denotes an open and bounded

subset of Rm. We put

L(A) = {A ∩ L : L ∈ L(Rm)}

for any A ∈ L(Rm).

Let α = (a1, . . . , am) and β = (b1, . . . , bm) with −∞ < aj < bj < ∞ for j =

1, . . . ,m. The set [α, β] =
m
∏

j=1

[aj , bj] is called a closed non-degenerate interval in Rm.

In particular, if b1 − a1 = . . . = bm − am, then I = [α, β] is called a cube. Two

closed non-degenerate intervals I and J in R
m are said to be non-overlapping if

I◦ ∩ J◦ = ∅, where I◦ denotes the interior of I. The family of all closed non-

degenerate subintervals in R
m is denoted by I and the family of all closed non-

degenerate subintervals in E ⊂ R
m is denoted by IE .

An interval function F : IE → X is said to be an additive interval function if for

each two non-overlapping intervals I, J ∈ IE such that I ∪ J ∈ IE we have

F (I ∪ J) = F (I) + F (J).

A pair (t, I) of a point t ∈ E and an interval I ∈ IE is called anM-tagged interval

in E, t is the tag of I. A finite collection {(ti, Ii) : i = 1, . . . , p} ofM-tagged intervals

in E is called an M-partition in E if {Ii : i = 1, . . . , p} is a collection of pairwise

non-overlapping intervals in IE . Given Z ⊂ E, a positive function δ : Z → (0,∞) is

called a gauge on Z. We say that anM-partition π = {(ti, Ii) : i = 1, . . . , p} in E is
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⊲ M-partition of E if
p
⋃

i=1

Ii = E,

⊲ Z-tagged if {t1, . . . , tp} ⊂ Z,

⊲ δ-fine if for each i = 1, . . . , p we have Ii ⊂ Bm(ti, δ(ti)).

We now fix an interval W ∈ I and let f : W → X be a function. The function f

is said to be McShane integrable onW if there is a vector xf ∈ X such that for every

ε > 0 there exists a gauge δ on W such that for every δ-fineM-partition π of W we

have
∥

∥

∥

∥

∑

(t,I)∈π

f(t)|I| − xf

∥

∥

∥

∥

< ε.

In this case, vector xf is said to be the McShane integral of f on W and we set

xf = (M)
∫

W
f dλ. Function f is said to be McShane integrable over a subset

A ⊂ W if the function f ·1A : W → X is McShane integrable on W , where 1A is

the characteristic function of the set A. The McShane integral of f over A will

be denoted by (M)
∫

A
f dλ. If f : W → X is McShane integrable on W , then by

Theorem 4.1.6 in [13], function f is McShane integrable on each E ∈ L(W ).

Function f : W → X is said to be variationally McShane integrable (or strongly

McShane integrable) on W if there exists an additive interval function F : IW → X

such that for every ε > 0 there exists a gauge δ on W such that for every δ-fine

M-partition π of W we have

∑

(t,I)∈π

‖f(t)|I| − F (I)‖ < ε.

Function F is said to be the primitive of f . Clearly, if f is variationally McShane inte-

grable with the primitive F , then f is McShane integrable, and by Proposition 3.6.16

in [13] we also have

F (I) = (M)

∫

I

f dλ for every I ∈ IW .

For more information about the McShane integral we refer to [17], [2], [4], [5]–[7],

[11], [10], [14] and [13].

Given an additive interval function F : IW → X , a subset Z ⊂ W and a gauge δ

on Z, we define

VMF (Z, δ) = sup

{

∑

(t,I)∈π

‖F (I)‖ : π is a Z-tagged δ-fineM-partition in W

}

.

Then we set

VMF (Z) = inf{VMF (Z, δ) : δ is a gauge on Z}.
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The set function VMF (·) is said to be the McShane variational measure generated

by F . It is a Borel metric outer measure on W , see [1] or [15]. The McShane

variational measure has been used extensively for studying the primitives (indefinite

integrals) of real functions. See e.g. paper [1] by Di Piazza, [12] by Pfeffer for relations

to integration and the fundamental general work [16] by Thomson.

An additive interval function F : IG → X is said to be strongly absolutely contin-

uous (sAC) on E ⊂ G if for each ε > 0 there exists η > 0 such that for each finite

collection {I1, . . . , Ip} of pairwise non-overlapping subintervals in IE we have

p
∑

i=1

|Ii| < η ⇒

p
∑

i=1

‖F (Ii)‖ < ε.

Assume that a point t ∈ G is given. We set

IG(t) = {I ∈ IG : t ∈ I, I is a cube}.

We say that F is cubic differentiable at t if there exists a vector F ′
c(t) ∈ X such that

lim
I∈IG(t)
|I|→0

F (I)

|I|
= F ′

c(t);

F ′
c(t) is said to be the cubic derivative of F at t.

A sequence (Ik) of pairwise non-overlapping intervals in IG is said to be a division

of G if
∞
⋃

k=1

Ik = G.

We denote by DG the family of all divisions of the set G. By Lemma 2.43 in [3], the

family DG is not empty.

An additive interval function F : IG → X is said to be a strong-Hake-function if

for each division (Ik) of G we have:

⊲ the series
∑

{k : |I∩Ik|>0}

‖F (I ∩ Ik)‖ converges in R for each I ∈ I,

⊲ F (I) =
∑

{k : |I∩Ik|>0}

F (I ∩ Ik) for all I ∈ IG.

We say that the additive interval function F : IG → X has the strong-M-negligible

variation over a subset Z ⊂ R
m if for each ε > 0 there exists a gauge δε on Z such

that for each Z-tagged δε-fineM-partition π in R
m we have:

⊲ the series
∑

{k : |I∩Ik|>0}

F (I ∩ Ik) is unconditionally convergent in X for each

(t, I) ∈ π,
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⊲
∑

(t,I)∈π

∥

∥

∥

(

∑

{k:|I∩Ik|>0}

F (I ∩ Ik)
)∥

∥

∥
< ε

whenever (Ik) is a division of G. We say that F has strong-M-negligible variation

outside of G if F has the strong-M-negligible variation over Gc = R
m \G.

We say that a function f : G → X is Hake-variationally McShane integrable on G

with the primitive F : IG → X if we have:

⊲ for each ε > 0 there exists a gauge δ on G such that for each δ-fineM-partition π

in G we have
∑

(t,I)∈π

‖f(t)|I| − F (I))‖ < ε,

⊲ F is the strong-Hake-function,

⊲ F has the strong-M-negligible variation outside of G.

In this case, we define the Hake-variational McShane integral of f over I as

(HvM)

∫

I

f dλ = F (I) ∀ I ∈ IG.

2. The main results

Since G is a bounded subset of Rm, there exists I0 ∈ I such that G ⊂ I0. Given

a function f : G → X , we define a function f0 : I0 → X as

f0(t) =

{

f(t) if t ∈ G,

0 if t ∈ I0 \G.

Theorem 2.1. Assume that a division (Ck) of G, a function f : G → X and an

additive interval function F : IG → X are given. Define

fk = f |Ck
and Fk = F |ICk

for each k ∈ N.

Then the following statements are equivalent:

(i) f is Hake-variationally McShane integrable on G with the primitive F ,

(ii) f0 is variationally McShane integrable on I0 with the primitive F0 such that

F0(I) = F (I) for all I ∈ IG,

(iii) for each k ∈ N, function fk is variationally McShane integrable on Ck with

the primitive Fk, F is a strong-Hake function and has the strong-M-negligible

variation outside of G.
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P r o o f. (i)⇒ (iii): Assume that f is Hake-variationally-McShane integrable onG

with the primitive F . Then given ε > 0 there exists a gauge δ on G such that for

each δ-fineM-partition π in G we have

(2.1)
∑

(t,I)∈π

‖f(t)|I| − F (I)‖ < ε.

We can choose δ(t) such that Bm(t, δ(t)) ⊂ G for all t ∈ G.

Since F is a strong-Hake function and has the strong-M-negligible variation out-

side of G, it is enough to prove that each fk is variationally McShane integrable

on Ck with the primitive Fk. Let πk be a δk-fineM-partition of Ck, where δk = δ|Ck
.

Then πk is a δ-fineM-partition in G and therefore

∑

(t,I)∈πk

‖fk(t)|I| − Fk(I)‖ =
∑

(t,I)∈πk

‖f(t)|I| − F (I)‖ < ε.

This means that fk is variationally McShane integrable on Ck with the primitive Fk.

(iii) ⇒ (ii): Assume that (iii) holds and an arbitrary ε > 0 is given. Then, since

each function fk is variationally McShane integrable on Ck with the primitive Fk,

by Lemma 3.6.15 in [13] there exists a gauge δk on Ck such that for each δk-fine

M-partition πk in Ck we have

(2.2)
∑

(t,I)∈πk

‖fk(t)|I| − Fk(I)‖ 6
ε

2k
.

Note that for t ∈ G we have the following possible cases:

⊲ There exists i0 ∈ N such that t ∈ (Ci0)
◦;

⊲ There exists j0 ∈ N such that t ∈ Cj0 \ (Cj0)
◦. In this case, there exists a finite set

Nt = {j ∈ N : t ∈ Cj \ (Cj)
◦} such that t ∈

⋂

j∈Nt

Cj and t /∈ Ck for all k ∈ N \ Nt.

Hence, t ∈
(

⋃

j∈Nt

Cj

)◦

, where
(

⋃

j∈Nt

Cj

)◦

is the interior of
⋃

j∈Nt

Cj .

We can choose each δk so that Bm(t, δk(t)) ⊂ Ck if t ∈ (Ck)
◦, and

Bm(t, δk(t)) ⊂
⋃

j∈Nt

Cj if t ∈ Ck \ (Ck)
◦.

Since F has the strong-M-negligible variation outside of G, there exists a gauge δv
on Gc such that for each Gc-tagged δv-fineM-partition πv in R

m we have

(2.3)
∑

(t,I)∈πv

∥

∥

∥

∥

(

∑

{k : |I∩Ck|>0}

F (I ∩ Ck)

)∥

∥

∥

∥

< ε.
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By hypothesis, we have also that F is a strong-Hake-function. Therefore we can

define an additive interval function F0 : II0 → X as

F0(I) =
∑

{k : |I∩Ck|>0}

F (I ∩ Ck) ∀ I ∈ II0 .

Clearly, F0(I) = F (I) for all I ∈ IG. We will show that f0 is variationally McShane

integrable on I0 with the primitive F0. To see this, we first define a gauge δ0 :

I0 → (0,∞) as follows. For any t ∈ G we choose δ0(t) = δi0(t) if t ∈ (Ci0)
◦, and

δ0(t) = min{δj(t) : j ∈ Nt} otherwise. If t ∈ I0 \ G, then we choose δ0(t) = δv(t).

Let π be an arbitrary δ0-fineM-partition of I0. Then π = πa ∪ πb ∪ πc, where

πa = {(t, I) ∈ π : (∃ i0 ∈ N) [t ∈ (Ci0)
◦]}

and

πb = {(t, I) ∈ π : (∃ j0 ∈ N)[t ∈ Cj0 \ (Cj0)
◦]},

πc = {(t, I) ∈ π : t ∈ I0 \G}.

Therefore

(2.4)
∑

(t,I)∈π

‖f0(t)|I| − F0(I)‖

=
∑

(t,I)∈πa

‖f(t)|I| − F (I)‖+
∑

(t,I)∈πb

‖f(t)|I| − F (I)‖+
∑

(t,I)∈πc

‖F0(I)‖.

Note that if we define

πk
a = {(t, I) : (t, I) ∈ πa, t ∈ (Ck)

◦}

and

πk
b = {(t, I ∩ Ck) : (t, I) ∈ πb, t ∈ Ck \ (Ck)

◦, |I ∩ Ck| > 0},

then πk
a and πk

b are δk-fineM-partitions in Ck. Therefore by (2.2) it follows that

(2.5)
∑

(t,I)∈πa

‖f(t)|I| − F (I)‖ =
∑

k

(

∑

t∈(Ck)
◦

(t,I)∈πa

‖fk(t)|I| − Fk(I)‖

)

=
∑

k

(

∑

(t,I)∈πk
a

‖fk(t)|I| − Fk(I)‖

)

6

∞
∑

k=1

ε

2k
= ε
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and

(2.6)
∑

(t,I)∈πb

‖f(t)|I| − F (I)‖

=
∑

(t,I)∈πb

∥

∥

∥

∥

(

∑

|I∩Cj|>0
j∈Nt

(f(t)|I ∩ Cj | − F (I ∩Cj))

)
∥

∥

∥

∥

=
∑

(t,I)∈πb

∥

∥

∥

∥

(

∑

|I∩Cj|>0
j∈Nt

(fj(t)|I ∩ Cj | − Fj(I ∩ Cj))

)∥

∥

∥

∥

6
∑

(t,I)∈πb

(

∑

|I∩Cj|>0
j∈Nt

‖fj(t)|I ∩ Cj | − Fj(I ∩ Cj)‖

)

6
∑

k

(

∑

(t,I)∈πk
b

‖fk(t)|I ∩ Ck| − Fk(I ∩ Ck)‖

)

6

∞
∑

k=1

ε

2k
= ε.

By (2.3), the equality

∑

(t,I)∈πc

‖F0(I)‖ =
∑

(t,I)∈πc

∥

∥

∥

∥

(

∑

{k : |I∩Ck|>0}

F (I ∩ Ck)

)∥

∥

∥

∥

together with the fact that πc is a G
c-tagged δv-fineM-partition in R

m yields

∑

(t,I)∈πc

‖F0(I)‖ < ε.

Hence, by (2.4), (2.5) and (2.6) we obtain

∑

(t,I)∈π

‖f0(t)|I| − F0(I)‖ < 3ε,

and since π is an arbitrary δ0-fineM-partition of I0, it follows that f0 is variationally

McShane integrable on I0 with the primitive F0.

(ii) ⇒ (i): Assume that f0 is variationally McShane integrable on I0 with the

primitive F0 such that F0(I) = F (I) for all I ∈ IG. By Lemma 3.6.15 in [13], given

ε > 0 there exists a gauge δ0 on I0 such that for each δ0-fineM-partition π in I0 we

have

(2.7)
∑

(t,I)∈π

‖f0(t)|I| − F0(I)‖ < ε.
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We can choose δ0 so that Bm(t, δ0(t)) ⊂ G for all t ∈ G. Hence, if we define δ = δ0|G,

then for each δ-fineM-partition π in G we have

∑

(t,I)∈π

‖f(t)|I| − F (I)‖ < ε.

Thus, it remains to show that F is a strong-Hake function and has strong-M-

negligible variation outside of G. Let (Ik) be an arbitrary division of G.

We first show that F is a strong-Hake function. Since f0 is variationally McShane

integrable on I0, ‖f0‖ is McShane integrable on I0 . Hence, by Theorem 4.1.11 and

Theorem 7.5.4 in [13] we obtain

(2.8) (M)

∫

G

‖f0‖ dλ =
∑

k

(M)

∫

Ik

‖f0‖ dλ =
∑

k

VMF0(Ik),

and since

VMF0(Ik) > VMF0(I ∩ Ik) > VMF (I ∩ Ik) > ‖F (I ∩ Ik)‖ for each I ∈ I,

it follows that the series
∑

{k : |I∩Ik|>0}

‖F (I ∩ Ik)‖ converges in R. By hypothesis, for

each I ∈ IG we have also

F (I) = F0(I) = (M)

∫

I

f0 dλ = (M)

∫

⋃

k

(I∩Ik)

f0 dλ =
∑

k

(M)

∫

I∩Ik

f0 dλ

=
∑

k

F0(I ∩ Ik) =
∑

{k : |I∩Ik|>0}

F (I ∩ Ik).

Thus, F is a strong-Hake-function.

It remains to prove that F has the strong-M-negligible variation outside of G.

To see this, we first define a gauge δv : Gc → (0,∞) as follows: δv(t) = δ0(t) if

t ∈ Z = I0 \G, while for t /∈ I0 we choose δv(t) so that Bm(t, δv(t))∩I0 = ∅. Assume

that πv is a G
c-tagged δv-fineM-partition in R

m. Hence,

πZ = {(t, I ∩ I0) : (t, I) ∈ πv, t ∈ Z, |I ∩ I0| > 0}

is a δ0-fineM-partition in I0. Then by (2.7), it follows that

ε >
∑

(t,J)∈πZ

‖f0(t)|J | − F0(J)‖ =
∑

(t,J)∈πZ

‖F0(J)‖
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=
∑

(t,J)∈πZ

∥

∥

∥

∥

(M)

∫

J

f0 dλ

∥

∥

∥

∥

=
∑

(t,J)∈πZ

∥

∥

∥

∥

(M)

∫

J∩G

f0 dλ

∥

∥

∥

∥

=
∑

(t,J)∈πZ

∥

∥

∥

∥

∑

k

(M)

∫

J∩Ik

f0 dλ

∥

∥

∥

∥

=
∑

(t,J)∈πZ

∥

∥

∥

∥

∑

{k : |J∩Ik|>0}

F0(J ∩ Ik)

∥

∥

∥

∥

=
∑

(t,J)∈πZ

∥

∥

∥

∥

∑

{k : |J∩Ik|>0}

F (J ∩ Ik)

∥

∥

∥

∥

=
∑

(t,I)∈πv

∥

∥

∥

∥

∑

{k : |I∩Ik|>0}

F (I ∩ Ik)

∥

∥

∥

∥

.

This means that F has the strong-M-negligible variation outside of G, and this ends

the proof. �

The following theorem shows a full descriptive characterization of Hake-variation-

McShane integral.

Theorem 2.2. Assume that a division (Ck) of G, a function f : G → X and an

additive interval function F : IG → X are given. Then the following statements are

equivalent:

(i) f is Hake-variationally McShane integrable with the primitive F ,

(ii) F ′
c(t) exists and F ′

c(t) = f(t) at almost all t ∈ G, F is sAC on each Ck, F is a

strong-Hake function and has the strong-M-negligible variation outside of G.

P r o o f. (i)⇒ (ii): Assume that f is Hake-variationally McShane integrable with

the primitive F . Then by Theorem 2.1, for I0 ∈ I with G ⊂ I0, the function f0 is

variationally McShane integrable on I0 with the primitive F0 such that F (I) = F0(I)

for all I ∈ IG. Hence, by Theorem 1.4 in [9], F0 is sAC on I0, (F0)
′
c(t) exists and

(F0)
′
c(t) = f0(t) at almost all t ∈ I0.

Since IG ⊂ II0 , F is sAC on G and therefore F is sAC on each Ck.

Fix an arbitrary k ∈ N and t ∈ (Ck)
◦ such that (F0)

′
c(t) = f0(t). It follows that

lim
I∈II0

(t)

|I|→0

F0(I)

|I|
= lim

I∈IG(t)
|I|→0

F (I)

|I|
.

Thus, F ′
c(t) exists and F

′
c(t) = f(t). Since k and t are arbitrary, the last result holds

at almost all t ∈
⋃

k

(Ck)
◦, and since

∣

∣

∣
G \

⋃

k

(Ck)
◦
∣

∣

∣
= 0,

it follows that F ′
c(t) exists and F ′

c(t) = f(t) at almost all t ∈ G.
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By the definition of the Hake-variationally McShane integrability, we have also

that F is a strong-Hake function and has the strong-M-negligible variation outside

of G.

(ii) ⇒ (i): Assume that (ii) holds and define

fk = f |Ck
and Fk = F |ICk

for each k ∈ N.

Then each Fk is sAC on Ck, (Fk)
′
c(t) exists and (Fk)

′
c(t) = fk(t) at almost all t ∈ Ck.

Therefore by Theorem 1.4 in [9], each fk is variational McShane integrable on Ck

with the primitive Fk. Therefore by Theorem 2.1, f is Hake-variationally McShane

integrable with the primitive F , and this ends the proof. �

A c k n ow l e d g em e n t . I am grateful to the referee for useful comments con-

cerning the previous version of this paper.
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