[1] Aranda A., Bradley-Williams D., Hubička J., Karamanlis M., Kompatscher M., Konečný M., Pawliuk M.: Ramsey Expansions of Metrically Homogeneous Graphs. available at arXiv:1707.02612 [math.CO], 2017.
[2] Evans D., Hubička J., Konečný M., Nešetřil J.: EPPA for two-graphs and antipodal metric spaces. available at arXiv:1812.11157 [math.CO] (2018), 13 pages.
[3] Evans D. M., Hubička J., Nešetřil J.: Ramsey properties and extending partial automorphisms for classes of finite structures. available at arXiv:1705.02379 [math.CO] (2017), 33 pages.
[7] Hodkinson I., Otto M.:
Finite conformal hypergraph covers and Gaifman cliques in finite structures. Bull. Symbolic Logic 9 (2003), no. 3, 387–405.
DOI 10.2178/bsl/1058448678 |
MR 2005955
[8] Huang J., Pawliuk M., Sabok M., Wise D.: The Hrushovski property for hypertournaments and profinite topologies. available at arXiv:1809.06435 [math.LO] (2018), 20 pages.
[9] Hubička J., Konečný M., Nešetřil J.: Conant's generalised metric spaces are Ramsey. available at arXiv:1710.04690 [math.CO] (2017), 22 pages.
[10] Hubička J., Konečný M., Nešetřil J.: All those EPPA classes (Strengthenings of the Herwig–Lascar theorem). available at arXiv:1902.03855 [math.CO] (2019), 27 pages.
[11] Hubička J., Nešetřil J.: All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms). available at arXiv:1606.07979 [math.CO] (2016), 59 pages.
[12] Hubička J., Nešetřil J.: Ramsey theorem for designs. The Ninth European Conf. on Combinatorics, Graph Theory and Applications (EuroComb 2017), Viena, 2017, Electronic Notes in Discrete Mathematics 61 (2017), 623–629.
[13] Konečný M.: Semigroup-valued Metric Spaces. Master thesis in preparation available at arXiv:1810.08963 [math.CO], 2018.
[17] Otto M.: Amalgamation and symmetry: From local to global consistency in the finite. available at arXiv:1709.00031 [math.CO] (2017), 49 pages.
[18] Pestov V. G.:
A theorem of Hrushovski-Solecki-Vershik applied to uniform and coarse embeddings of the Urysohn metric space. Topology Appl. 155 (2008), no. 14, 1561–1575.
DOI 10.1016/j.topol.2008.03.002 |
MR 2435149
[19] Rosendal Ch.:
Finitely approximate groups and actions. Part I: The Ribes-Zalesskiĭ property. J. Symbolic Logic 76 (2011), no. 4, 1297–1306.
DOI 10.2178/jsl/1318338850 |
MR 2895386
[21] Sabok M.:
Automatic continuity for isometry groups. J. Inst. Math. Jussieu (online 2017), 30 pages.
MR 3936642
[22] Siniora D., Solecki S.: Coherent extension of partial automorphisms, free amalgamation, and automorphism groups. available at arXiv:1705.01888v3 [math.LO] (2018), 29 pages.
[25] Vershik A. M.:
Globalization of the partial isometries of metric spaces and local approximation of the group of isometries of Urysohn space. Topology Appl. 155 (2008), no. 14, 1618–1626.
DOI 10.1016/j.topol.2008.03.007 |
MR 2435153