Previous |  Up |  Next

Article

Keywords:
construction scheme; Knaster hierarchy; Cohen reals
Summary:
We investigate the question of whether or not an amenable subgroup of the permutation group on $\mathbb{N}$ can have a unique invariant mean on its action. We extend the work of M. Foreman (1994) and show that in the Cohen model such an amenable group with a unique invariant mean must fail to have slow growth rate and a certain weakened solvability condition.
References:
[1] Bartholdi L., Virág B.: Amenability via random walks. Duke Math. J. 130 (2005), no. 1, 39–56. DOI 10.1215/S0012-7094-05-13012-5 | MR 2176547
[2] Dushnik B., Miller E. W.: Partially ordered sets. Amer. J. Math. 63 (1941), no. 3, 600–610. DOI 10.2307/2371374 | MR 0004862
[3] Foreman M.: Amenable groups and invariant means. J. Funct. Anal. 126 (1994), no. 1, 7–25. DOI 10.1006/jfan.1994.1139 | MR 1305061
[4] Krasa S.: The action of a solvable group on an infinite set never has a unique invariant mean. Trans. Amer. Math. Soc. 305 (1988), no. 1, 369–376. DOI 10.1090/S0002-9947-1988-0920164-X | MR 0920164
[5] Paterson A. L. T.: Amenability. Mathematical Surveys and Monographs, 29, American Mathematical Society, Providence, 1988. MR 0961261 | Zbl 1106.22008
[6] Rosenblatt J., Talagrand M.: Different types of invariant means. J. London Math. Soc. (2) 24 (1981), no. 3, 525–532. DOI 10.1112/jlms/s2-24.3.525 | MR 0635883
[7] Yang Z.: Action of amenable groups and uniqueness of invariant means. J. Funct. Anal. 97 (1991), no. 1, 50–63. DOI 10.1016/0022-1236(91)90015-W | MR 1105654
Partner of
EuDML logo