Article
Keywords:
asymptotic density; measure; ultrafilter; P-ultrafilter
Summary:
We characterize for which ultrafilters on $\omega$ is the ultrafilter extension of the asymptotic density on natural numbers $\sigma$-additive on the quotient boolean algebra $\mathcal{P}(\omega)/d_{\mathcal{U}}$ or satisfies similar additive condition on $\mathcal{P}(\omega)/\text{fin}$. These notions were defined in [Blass A., Frankiewicz R., Plebanek G., Ryll-Nardzewski C., {A Note on extensions of asymptotic density}, Proc. Amer. Math. Soc. {129} (2001), no. 11, 3313--3320] under the name ${\boldsymbol{AP}}$(null) and ${\boldsymbol{AP}}$(*). We also present a characterization of a $P$- and semiselective ultrafilters using the ultraproduct of $\sigma$-additive measures.
References:
[1] Bartoszyński T., Judah H.:
Set Theory: On the Structure of the Real Line. A. K. Peters, Wellesley, 1995.
MR 1350295
[3] Fremlin D. H.:
Measure Theory, Vol. 3: Measure Algebras. Torres Fremlin, Colchester, 2004.
MR 2459668