Previous |  Up |  Next

Article

Keywords:
Bergman spaces; distance estimates; pseudoconvex domains; analytic functions
Summary:
We consider and solve extremal problems in various bounded weakly pseudoconvex domains in $\mathbb {C}^{n}$ based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces $A_{\alpha }^{p}$ in such type domains. We provide some new sharp theorems for distance function in Bergman spaces in bounded weakly pseudoconvex domains with natural additional condition on Bergman representation formula.
References:
[1] Ahn, H., Cho, S.: On the mapping properties of the Bergman projection on pseudoconvex domains with one degenerate eigenvalue. Complex Variables Theory Appl., 39, 4, 1999, 365-379, DOI 10.1080/17476939908815203 | MR 1727631
[2] Arsenović , M., Shamoyan, R.: On distance estimates and atomic decomposition on spaces of analytic functions on strictly pseudoconvex domains. Bulletin Korean Math. Society, 52, 1, 2015, 85-103, MR 3313426
[3] Beatrous, F.: Estimates for derivatives of holomorphic functions in strongly pseudoconvex domains. Math. Zam., 191, 1, 1986, 91-116, DOI 10.1007/BF01163612 | MR 0812605
[4] Charpentier, P., Dupain, Y.: Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat., 50, 2006, 413-446, DOI 10.5565/PUBLMAT_50206_08 | MR 2273668
[5] Chen, B.: Weighted Bergman kernel: asymptotic behavior, applications and comparison results. Studia Mathematica, 174, 2, 2006, 111-130, DOI 10.4064/sm174-2-1 | MR 2238457
[6] Cho, H.R., Kwon, E.G.: Embedding of Hardy spaces into weighted Bergman spaces in bounded domains with $C^2$ boundary. Illinois J. Math., 48, 3, 2004, 747-757, DOI 10.1215/ijm/1258131050 | MR 2114249
[7] Cho, S.: A mapping property of the Bergman projection on certain pseudoconvex domains. Tóhoku Math. Journal, 48, 1996, 533-542, DOI 10.2748/tmj/1178225297 | MR 1419083
[8] Ehsani, D., Lieb, I.: $L^p$-estimates for the Bergman projection on strictly pseudoconvex nonsmooth domains. Math. Nachr., 281, 7, 2008, 916-929, DOI 10.1002/mana.200710649 | MR 2431567
[9] Gheorghe, L.G.: Interpolation of Besov spaces and applications. Le Matematiche, LV, Fasc. I, 2000, 29-42, MR 1888995
[10] Jevtić, M.: Besov spaces on bounded symmetric domains. Matematički vesnik, 49, 1997, 229-233, MR 1611753
[11] Lanzani, L., Stein, E.M.: The Bergman projection in $L^p$ for domains with minimal smoothness. Illinois Journal of Mathematics, 56, 1, 2012, 127-154, DOI 10.1215/ijm/1380287464 | MR 3117022
[12] McNeal, J.D., Stein, E.M.: Mapping properties of the Bergman projection on convex domain of finite type. Duke Math. J., 73, 1994, 177-199, MR 1257282
[13] Phong, D.H., Stein, E.M.: Estimates for the Bergman and Szegö projection on strongly pseudoconvex domains. Duke Math. J., 44, 1977, 695-704, MR 0450623
[14] Shamoyan, R.F., Kurilenko, S.M.: On extremal problems in tubular domains over symmetric cones. Issues of Analysis, 1, 2014, 44-65, DOI 10.15393/j3.art.2014.2261 | MR 3352521
[15] Shamoyan, R.F., Mihić , O.: Extremal Problems in Certain New Bergman Type Spaces in Some Bounded Domains in $\mathbb {C}^{n}$. Journal of Function Spaces, 2014, 2014, p. 11, Article ID 975434. MR 3248932
[16] Shamoyan, R.F., Mihić, O.: On distance function in some new analytic Bergman type spaces in $\mathbb {C}^{n}$. Journal of Function Spaces, 2014, 2014, p. 10, Article ID 275416. MR 3208648
[17] Shamoyan, R.F., Mihić, O.: On new estimates for distances in analytic function spaces in higher dimension. Siberian Electronic Mathematical Reports, 6, 2009, 514-517, MR 2586703 | Zbl 1299.30106
[18] Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains. Quarterly J. Math., 46, 1995, 239-256, DOI 10.1093/qmath/46.2.239 | MR 1333834
[19] Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains, III. Indiana University Mathematical Journal, 44, 1995, 1017-1031, MR 1386759
Partner of
EuDML logo