[3] Andrews, G.E.:
Connection coefficient problems and partitions. Proc. Sympos. Pure Math., 34, 1979, 1-24,
MR 0525316
[5] Bailey, W.N.:
Generalized Hypergeometric Series. 1935, Cambridge University Press, Cambridge,
MR 0185155
[7] Bailey, W.N.:
On the analogue of Dixon's theorem for bilateral basic hypergeometric series. Quart. J. Math. (Oxford), 1, 1950, 318-320,
DOI 10.1093/qmath/1.1.318 |
MR 0039852
[8] Bressoud, D.M.:
Almost poised basic hypergeometric series. Proc. Indian Acad. Sci. Math. Sci., 97, 1-3, 1987, 61-66,
MR 0983605
[10] Carlitz, L.:
Some $q$-expansion formulas. Glasnik Mat., 8, 28, 1973, 205-213,
MR 0330842
[11] Chu, W.:
Inversion techniques and combinatorial identities: Basic hypergeometric identities. Publ. Math. Debrecen, 44, 3-4, 1994, 301-320,
MR 1291979
[12] Chu, W.:
Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series. Compos. Math., 91, 2, 1994, 121-144,
MR 1273645
[14] Chu, W.:
Basic Almost-Poised Hypergeometric Series. 135, 642, 1998, x+99 pp, Mem. Amer. Math. Soc.,
MR 1434989
[15] Chu, W.:
Partial-fraction expansions and well-poised bilateral series. Acta Sci. Mat., 64, 1998, 495-513,
MR 1666034
[16] Chu, W.:
$q$-Derivative operators and basic hypergeometric series. Results Math., 49, 1-2, 2006, 25-44,
MR 2264824
[17] Chu, W.:
Abel's Method on summation by parts and Bilateral Well-Poised $_3\psi _3$-Series Identities. Difference Equations, Special Functions and Orthogonal Polynomials Proceedings of the International Conference (München, Germany, July 2005), 2007, 752-761, World Scientific Publishers,
MR 2451214
[18] Chu, W.:
Divided differences and generalized Taylor series. Forum Math., 20, 6, 2008, 1097-1108,
MR 2479292
[20] Chu, W.:
Elementary proofs for convolution identities of Abel and Hagen-Rothe. Electron. J. Combin., 17, 1, 2010, 24,
MR 2644861
[23] Gasper, G., Rahman, M.:
Basic Hypergeometric Series. 2004, Cambridge University Press, 2nd Ed..
MR 2128719 |
Zbl 1129.33005
[24] Gessel, I.M., Stanton, D.:
Applications of $q$-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc., 277, 1983, 173-201,
MR 0690047
[31] Slater, I.J.:
Generalized Hypergeometric Functions. 1966, Cambridge University Press, Cambridge,
MR 0201688
[32] Verma, A., Jain, V.K.:
Some summation formulae for nonterminating basic hypergeometric series. SIAM J. Math. Anal., 16, 3, 1985, 647-655,
DOI 10.1137/0516048 |
MR 0783988
[33] Verma, A., Joshi, C.M.:
Some remarks on summation of basic hypergeometric series. Houston J. Math., 5, 2, 1979, 277-294,
MR 0546763