Previous |  Up |  Next

Article

Keywords:
Terminating $q$-series; the $q$-derivative operator; well-poised series; balanced series; Pfaff-Saalschüutz summation theorem; Gasper's $q$-Karlsson-Minton formula
Summary:
The $q$-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.
References:
[1] Al-Salam, W.A., Verma, A.: On quadratic transformations of basic series. SIAM J. Math., 15, 1984, 414-420, DOI 10.1137/0515032 | MR 0731877
[2] Andrews, G.E.: On $q$-analogues of the Watson and Whipple summations. SIAM J. Math., 7, 3, 1976, 332-336, DOI 10.1137/0507026 | MR 0399529
[3] Andrews, G.E.: Connection coefficient problems and partitions. Proc. Sympos. Pure Math., 34, 1979, 1-24, MR 0525316
[4] Andrews, G.E.: Pfaff's method (II): diverse applications. J. Comp. and Appl. Math., 68, 1--2, 1996, 15-23, DOI 10.1016/0377-0427(95)00258-8 | MR 1418748
[5] Bailey, W.N.: Generalized Hypergeometric Series. 1935, Cambridge University Press, Cambridge, MR 0185155
[6] Bailey, W.N.: A note on certain $q$-identities. Quart. J. Math. (Oxford), 12, 1941, 173-175, DOI 10.1093/qmath/os-12.1.173 | MR 0005964
[7] Bailey, W.N.: On the analogue of Dixon's theorem for bilateral basic hypergeometric series. Quart. J. Math. (Oxford), 1, 1950, 318-320, DOI 10.1093/qmath/1.1.318 | MR 0039852
[8] Bressoud, D.M.: Almost poised basic hypergeometric series. Proc. Indian Acad. Sci. Math. Sci., 97, 1-3, 1987, 61-66, MR 0983605
[9] Carlitz, L.: Some formulas of F.H. Jackson. Monatsh. Math., 73, 1969, 193-198, DOI 10.1007/BF01300534 | MR 0248035
[10] Carlitz, L.: Some $q$-expansion formulas. Glasnik Mat., 8, 28, 1973, 205-213, MR 0330842
[11] Chu, W.: Inversion techniques and combinatorial identities: Basic hypergeometric identities. Publ. Math. Debrecen, 44, 3-4, 1994, 301-320, MR 1291979
[12] Chu, W.: Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series. Compos. Math., 91, 2, 1994, 121-144, MR 1273645
[13] Chu, W.: Partial fractions and bilateral summations. J. Math. Phys., 35, 4, 1994, 2036-2042, DOI 10.1063/1.530536 | MR 1267941
[14] Chu, W.: Basic Almost-Poised Hypergeometric Series. 135, 642, 1998, x+99 pp, Mem. Amer. Math. Soc., MR 1434989
[15] Chu, W.: Partial-fraction expansions and well-poised bilateral series. Acta Sci. Mat., 64, 1998, 495-513, MR 1666034
[16] Chu, W.: $q$-Derivative operators and basic hypergeometric series. Results Math., 49, 1-2, 2006, 25-44, MR 2264824
[17] Chu, W.: Abel's Method on summation by parts and Bilateral Well-Poised $_3\psi _3$-Series Identities. Difference Equations, Special Functions and Orthogonal Polynomials Proceedings of the International Conference (München, Germany, July 2005), 2007, 752-761, World Scientific Publishers, MR 2451214
[18] Chu, W.: Divided differences and generalized Taylor series. Forum Math., 20, 6, 2008, 1097-1108, MR 2479292
[19] Chu, W.: Abel's method on summation by parts and balanced $q$-series identities. Appl. Anal. Discrete Math., 4, 2010, 54-65, DOI 10.2298/AADM1000006C | MR 2654930
[20] Chu, W.: Elementary proofs for convolution identities of Abel and Hagen-Rothe. Electron. J. Combin., 17, 1, 2010, 24, MR 2644861
[21] Chu, W., Wang, C.: Bilateral inversions and terminating basic hypergeometric series identities. Discrete Math., 309, 12, 2009, 3888-3904, DOI 10.1016/j.disc.2008.11.002 | MR 2537383
[22] Gasper, G.: Summation formulas for basic hypergeometric series. SIAM J. Math. Anal., 12, 2, 1981, 196-200, DOI 10.1137/0512020 | MR 0605430
[23] Gasper, G., Rahman, M.: Basic Hypergeometric Series. 2004, Cambridge University Press, 2nd Ed.. MR 2128719 | Zbl 1129.33005
[24] Gessel, I.M., Stanton, D.: Applications of $q$-Lagrange inversion to basic hypergeometric series. Trans. Amer. Math. Soc., 277, 1983, 173-201, MR 0690047
[25] Gould, H.W.: Some generalizations of Vandermonde's convolution. Amer. Math. Monthly, 63, 1, 1956, 84-91, DOI 10.1080/00029890.1956.11988763 | MR 0075170
[26] Jackson, F.H.: Certain $q$-identities. Quart. J. Math., 12, 1941, 167-172, DOI 10.1093/qmath/os-12.1.167 | MR 0005963
[27] Karlsson, P.W.: Hypergeometric formulas with integral parameter differences. J. Math. Phys., 12, 2, 1971, 270-271, DOI 10.1063/1.1665587 | MR 0276506
[28] Liu, Z.: An expansion formula for $q$-series and applications. Ramanujan J., 6, 4, 2002, 429-447, DOI 10.1023/A:1021306016666 | MR 2125009
[29] Minton, B.M.: Generalized hypergeometric function of unit argument. J. Math. Phys., 11, 4, 1970, 1375-1376, DOI 10.1063/1.1665270 | MR 0262557
[30] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/17.7
[31] Slater, I.J.: Generalized Hypergeometric Functions. 1966, Cambridge University Press, Cambridge, MR 0201688
[32] Verma, A., Jain, V.K.: Some summation formulae for nonterminating basic hypergeometric series. SIAM J. Math. Anal., 16, 3, 1985, 647-655, DOI 10.1137/0516048 | MR 0783988
[33] Verma, A., Joshi, C.M.: Some remarks on summation of basic hypergeometric series. Houston J. Math., 5, 2, 1979, 277-294, MR 0546763
Partner of
EuDML logo