[1] Birge, J. R., Louveaux, F.:
Introduction to Stochastic Programming. Springer Science and Business Media, 2011.
MR 2807730
[2] Consigli, G., Moriggia, V., Benincasa, E., Landoni, G., Petronio, F., Vitali, S., Tria, M. di, Skoric, M., Uristani, A.:
Optimal multistage defined-benefit pension fund management. In: Recent Advances in Commmodity and Financial Modeling: Quantitative methods in Banking, Finance, Insurance, Energy and Commodity markets (G. Consigli, S. Stefani, and G. Zambruno eds.), Springer's International Series in Operations Research and Management Science, 2017.
DOI 10.1007/978-3-319-61320-8_13 |
MR 3702011
[3] Dupačová, J., Hurt, J., Štěpán, J.:
Stochastic Modeling in Economics and Finance. Applied Optimization, Springer, 2002.
DOI 10.1007/b101992 |
MR 2008457
[4] Kilianová, S., Pflug, G. C.:
Optimal pension fund management under multi-period risk minimization. Ann. Oper. Res. 166 (2009), 1, 261-270.
DOI 10.1007/b101992 |
MR 2471003
[6] Kopa, M., Moriggia, V., Vitali, S.:
Individual optimal pension allocation under stochastic dominance constraints. Ann. Oper. Res. 260 (2018), 1,2, 255-291.
DOI 10.1007/s10479-016-2387-x |
MR 3741562
[7] Kovacevic, R. M., Pichler, A.:
Tree approximation for discrete time stochastic processes: a process distance approach. Ann. Oper. Res. 235 (2015), 1, 395-421.
DOI 10.1007/s10479-015-1994-2 |
MR 3428599
[8] Maggioni, F., Pflug, G. C.:
Bounds and approximations for multistage stochastic programs. SIAM J. Optim. 26 (2016), 1, 831-855.
DOI 10.1137/140971889 |
MR 3477324
[10] Maggioni, F., Allevi, E., Bertocchi, M.:
Monotonic bounds in multistage mixed-integer liner stochastic programming. Comput. Management Sci. 13 (2016), 3, 423-457.
DOI 10.1007/s10287-016-0254-5 |
MR 3514994
[11] Pflug, G. C., Pichler, A.:
A distance for multistage stochastic optimization models. SIAM J. Optim. 22 (2012), 1, 1-23.
DOI 10.1137/110825054
[13] Pflug, G. C., Pichler, A.: Convergence of the smoothed empirical process in nested distance. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut fűr Mathematik (J. L. Higle, W. Römisch, and S. Surrajeet, eds.), 2015.
[14] Pflug, G. C., Pichler, A.:
From empirical observations to tree models for stochastic optimization: Convergence properties. SIAM J. Optim. 26 (2016), 3, 1715-1740.
DOI 10.1137/15m1043376 |
MR 3543169
[16] Rockafellar, T. R., Uryasev, S.:
Optimization of conditional value-at-risk. J. Risk 2 (2000), 21-42.
DOI 10.21314/jor.2000.038
[17] Shapiro, A., Dentcheva, D., Ruszczyński, A.:
Lectures on stochastic programing. Modeling and Theory. SIAM Math. Programm. Soc. 2009.
MR 3242164
[18] Timonina, A. V.:
Multi-stage stochastic optimization: the distance between stochastic scenario processes. Computat. Management Sci. 12 (2015), 1, 171-195.
DOI 10.1007/s10287-013-0185-3 |
MR 3296230
[19] Vitali, S., Moriggia, V., Kopa, M.:
Optimal pension fund composition for an Italian private pension plan sponsor. Comput. Management Sci. 14 (2017), 1, 135-160.
DOI 10.1007/s10287-016-0263-4 |
MR 3599603