[1] Adam, L., Branda, M.:
Nonlinear chance constrained problems: Optimality conditions, regularization and solvers. J. Optim. Theory Appl. 170 (2016), 2, 419-436.
DOI 10.1007/s10957-016-0943-9 |
MR 3527703
[2] Beck, A. T., Gomes, W. J. S., Lopez, R. H., Miguel, L. F. F.:
A comparison between robust and risk-based optimization under uncertainty. Struct. Multidisciplin. Optim. 52 (2015), 3, 479-492.
DOI 10.1007/s00158-015-1253-9 |
MR 3399194
[6] Campi, M. C., Garatti, S.:
A Sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148 (2011), 257-280.
DOI 10.1007/s10957-010-9754-6 |
MR 2780563
[7] Carè, A., Garatti, S., Campi, M. C.:
Scenario min-max optimization and the risk of empirical costs. SIAM J. Optim. 25 (2015), 4, 2061-2080.
DOI 10.1137/130928546 |
MR 3413595
[8] Dupačová, J.:
Stochastic geometric programming with an application. Kybernetika 46 (2010), 3, 374-386.
MR 2676074
[9] Gandomi, A. H., Yang, X.-S., Alavi, A. H.:
Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Engrg. Comput. 29 (2013), 1, 17-35.
DOI 10.1007/s00366-011-0241-y
[10] Grant, M., Boyd, S.:
Graph implementations for nonsmooth convex programs. In: Recent Advances in Learning and Control (V. Blondel, S. Boyd and H. Kimura, eds.), Springer-Verlag Limited, Berlin 2008, pp. 95-110.
DOI 10.1007/978-1-84800-155-8_7 |
MR 2409077
[11] Haslinger, J., Mäkinen, R. A. E.:
Introduction to Shape Optimization: Theory, Approximation, and Computation (Advances in Design and Control). SIAM, 2003.
DOI 10.1137/1.9780898718690 |
MR 1969772
[12] Laníková, I., Štěpánek, P., Šimůnek, P.:
Optimized Design of concrete structures considering environmental aspects. Advances Structural Engrg. 17 (2014), 4, 495-511.
DOI 10.1260/1369-4332.17.4.495
[13] Lepš, M., Šejnoha, M.:
New approach to optimization of reinforced concrete beams. Computers Structures 81 (2003), 1, 1957-1966.
DOI 10.1016/s0045-7949(03)00215-3
[14] Luedtke, J., Ahmed, S., Nemhauser, G. L.:
An integer programming approach for linear programs with probabilistic constraints. Math. Programm. Ser. A 122 (2010), 247-272.
DOI 10.1007/s10107-008-0247-4 |
MR 2546332
[15] Marek, P., Brozzetti, J., Gustar, M.:
Probabilistic Assessment of Structures using Monte Carlo Simulation. TeReCo, Praha 2001.
DOI 10.1115/1.1451167
[17] Oberg, E., Jones, F. D., Ryffel, H. H.: Machinery's Handbook Guide. 29th edition. Industrial Press, 2012.
[18] Pagnoncelli, B. K., Ahmed, S., Shapiro, A.:
Sample average approximation method for chance constrained programming: Theory and applications. J. Optim. Theory Appl. 142 (2009), 399-416.
DOI 10.1007/s10957-009-9523-6 |
MR 2525799
[19] Rozvany, G. I. N., (eds.), T. Lewiński:
CISM Courses and Lectures: Topology Optimization in Structural and Continuum Mechanics. Springer-Verlag, Wien 2014.
MR 3183768
[20] Ruszczynski, A., (eds.), A. Shapiro:
Handbooks in Operations Research and Management Science: Stochastic Programming. Elsevier, Amsterdam 2003.
MR 2051792
[21] Šabartová, Z., Popela, P.: Beam design optimization model with FEM based constraints. Mendel J. Ser. 1 (2012), 422-427.
[22] Smith, I. M., Griffiths, D. V.:
Programming the Finite Element Method. Fourth edition. John Wiley and Sons, New York 2004.
MR 0934925
[23] Young, W. C., Budynas, R. G., Sadegh, A. M.:
Roark's Formulas for Stress and Strain. Seventh edition. McGraw-Hill Education, 2002.
MR 0112352
[24] Žampachová, E., Popela, P., Mrázek, M.:
Optimum beam design via stochastic programming. Kybernetika 46 (2010), 3, 571-582.
MR 2676092
[25] Zhuang, X., Pan, R.:
A sequential sampling strategy to improve reliability-based design optimization with implicit constraint functions. J. Mechan. Design 134 (2012), 2, Article number 021002.
DOI 10.1115/1.4005597