[1] Abe, R., Ishimura, N.:
Existence of solutions for the nonlinear partial differential equation arising in the optimal investment problem. Proc. Japan Acad. Ser. A 84 (2008), 1, 11-14.
DOI 10.3792/pjaa.84.11 |
MR 2381178
[2] Agarwal, V., Naik, N. Y.:
Risk and portfolio decisions involving hedge funds. Rev. Financ. Stud. 17 (2004), 1, 63-98.
DOI 10.1093/rfs/hhg044
[4] Arrow, K. J.:
Aspects of the theory of risk bearing. In: The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio. (Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971), (1965), pp. 90-109.
MR 0363427
[6] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.:
Non-linear Parametric Optimization. Licensed ed. Birkhauser Verlag, Basel-Boston, Mass., 1983.
DOI 10.1007/978-3-0348-6328-5 |
MR 0701243
[8] Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S.:
Different Approaches to Risk Estimation in Portfolio Theory. J. Portfolio Management 31 (2004), 1, 103-112.
DOI 10.3905/jpm.2004.443328
[10] Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., Laeven, R.:
Risk measurement with equivalent utility principles. Statist. Decisions 24 (2006), 1-25.
DOI 10.1524/stnd.2006.24.1.1 |
MR 2323186
[11] Farinelli, S., Ferreira, M., Rosselloc, D., Thoeny, M., Tibiletti, L.:
Beyond Sharpe ratio: Optimal asset allocation using different performance ratios. J. Banking Finance 32 (2008), 10, 2057-2063.
DOI 10.1016/j.jbankfin.2007.12.026
[12] Huang, Y., Forsyth, P. A., Labahn, G.:
Combined fixed point and policy iteration for Hamilton-Jacobi-Bellman equations in finance. SIAM J. Numer. Anal. 50 (2012), 4, 1861-1882.
DOI 10.1137/100812641 |
MR 3022201
[13] Ishimura, N., Koleva, M. N., Vulkov, L. G.:
Numerical solution via transformation methods of nonlinear models in option pricing. AIP Conference Proceedings 1301 (2010), 1, 387-394.
DOI 10.1063/1.3526637
[14] Ishimura, N., Ševčovič, D.:
On traveling wave solutions to a Hamilton-Jacobi-Bellman equation with inequality constraints. Japan J. Ind. Appl. Math. 30 (2013), 1, 51-67.
DOI 10.1007/s13160-012-0087-8 |
MR 3022806
[15] Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S.:
Explicit solution of a general consumption/investment problem. Math. Oper. Res. 11 (1986), 2, 261-294.
DOI 10.1287/moor.11.2.261 |
MR 0844005
[16] Kilianová, S., Ševčovič, D.:
A transformation method for solving the Hamilton-Jacobi-Bellman equation for a constrained dynamic stochastic optimal allocation problem. ANZIAM J. 55 (2013), 14-38.
DOI 10.21914/anziamj.v55i0.6816 |
MR 3144202
[18] Klatte, D.:
On the {L}ipschitz behavior of optimal solutions in parametric problems of quadratic optimization and linear complementarity. Optim. J. Math. Program. Oper. Res. 16 (1985), 6, 819-831.
DOI 10.1080/02331938508843080 |
MR 0814211
[19] Koleva, M. N.:
Iterative methods for solving nonlinear parabolic problem in pension saving management. AIP Confer. Proc. 1404 (2011), 1, 457-463.
DOI 10.1063/1.3659948
[20] Koleva, M. N., Vulkov, L.:
Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance. Math. Comput. Modell. 57 (2013), 2564-2575.
DOI 10.1016/j.mcm.2013.01.008 |
MR 3068748
[21] Kútik, P., Mikula, K.:
Finite volume schemes for solving nonlinear partial differential equations in financial mathematics. In: Finite Volumes for Complex Applications VI, Problems and Perspectives (J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds.), Springer Proc. Math. 4 (2011), pp. 643-651.
DOI 10.1007/978-3-642-20671-9_68 |
MR 2882342
[22] LeVeque, R. J.:
Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge 2002.
DOI 10.1017/cbo9780511791253 |
MR 1925043
[23] Lin, S., Ohnishi, M.:
Optimal portfolio selection by CVaR based Sharpe ratio genetic algorithm approach. Sci. Math. Japon. Online e-2006 (2006), 1229-1251.
MR 2300341
[24] Macová, Z., Ševčovič, D.:
Weakly nonlinear analysis of the Hamilton-Jacobi-Bellman equation arising from pension savings management. Int. J. Numer. Anal. Model. 7 (2010), 4, 619-638.
MR 2644295
[30] Pflug, G. Ch., Römisch, W.:
Modeling, Measuring and Managing Risk. World Scientific Publushing, 2007.
DOI 10.1142/6478 |
MR 2424523
[34] Reisinger, C., Witte, J. H.:
On the use of policy iteration as an easy way of pricing American options. SIAM J. Financ. Math. 3 (2012), 459-478.
DOI 10.1137/110823328 |
MR 2968042
[35] Seck, B., Andrieu, L., Lara, M. De:
Parametric multi-attribute utility functions for optimal profit under risk constraints. Theory Decision. 72 (2012), 2, 257-271.
DOI 10.1007/s11238-011-9255-6 |
MR 2878102
[37] Ševčovič, D., Stehlíková, B., Mikula, K.: Analytical and Numerical Methods for Pricing Financial Derivatives. Nova Science Publishers, Inc., Hauppauge 2011.
[38] Tourin, A., Zariphopoulou, T.:
Numerical schemes for investment models with singular transactions. Comput. Econ. 7 (1994), 4, 287-307.
DOI 10.1007/bf01299457 |
MR 1318095
[39] Vickson, R. G.:
Stochastic dominance for decreasing absolute risk aversion. J. Financial Quantitative Analysis 10 (1975), 799-811.
DOI 10.2307/2330272
[40] Wiesinger, A.: Risk-Adjusted Performance Measurement State of the Art. Bachelor Thesis of the University of St. Gallen School of Business Administration, Economics, Law and Social Sciences (HSG), 2010.
[41] Xia, J.:
Risk aversion and portfolio selection in a continuous-time model. J. Control Optim. 49 (2011), 5, 1916-1937.
DOI 10.1137/10080871x |
MR 2837505