[1] Aguiló, I., Suñer, J., Torrens, J.:
A characterization of residual implications derived from left-continuous uninorms. Inform. Sci. 180 (2010), 3992-4005.
DOI 10.1016/j.ins.2010.06.023 |
MR 2671753
[3] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Springer, Berlin, Herdelberg 2008.
Zbl 1293.03012
[4] Baets, B. De:
An order-theoretic approach to solving sup-T equations. In: Fuzzy Set Theory and Advanced Mathemtical Applications (D. Ruan, ed.), Kluwer, Dordrecht 1995, pp. 67-87.
DOI 10.1007/978-1-4615-2357-4_3
[8] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Seventh IFSA World Congress, Prague, 220 (1997), 215-220.
[11] Csiszár, O., Fodor, J.:
On uninorms with fixed values along their border. Ann. Univ. Sci. Bundapest., Sect. Com. 42 (2014), 93-108.
MR 3275665
[16] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.:
A characterization of a class of uninorms with continuous underlying operators. Fuzzy Sets Systems 287 (2016), 137-153.
DOI 10.1016/j.fss.2015.07.015 |
MR 3447023
[22] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[23] Klement, E. P., Mesiar, R., Pap, E.:
Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8 (2000), 707-717.
DOI 10.1142/s0218488500000514 |
MR 1803475
[24] Li, G., Liu, H-W., Fodor, J.:
Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 591-604.
DOI 10.1142/s0218488514500299 |
MR 3252143
[26] Li, G., Liu, H-W.:
Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets Systems 287 (2016), 154-171.
DOI 10.1016/j.fss.2015.01.019 |
MR 3447024
[27] Li, G., Liu, H-W.:
On Relations Between Several Classes of Uninorms. In: Fan TH., Chen SL., Wang SM., Li YM. (eds) Quantitative Logic and Soft Computing 2016. Advances in Intelligent Systems and Computing, vol. 510. Springer, 2017, pp. 251-259.
DOI 10.1007/978-3-319-46206-6_25
[31] Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.:
A survey on the existing classes of uninorms. J. Intell. Fuzzy Systems 29(3) (2015), 1021-1037.
DOI 10.3233/ifs-151728 |
MR 3414365
[33] Mesiarová, A.:
Characterization of uninorms with continuous underlying t-norm and t-conorm by their set of discontinuity points. IEEE Trans. Fuzzy Systems PP (2017), in press.
MR 3614252
[34] Mesiarová, A.:
Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction. Int. J. Approx. Reason. 87 (2017), 176-192.
DOI 10.1016/j.ijar.2017.01.007 |
MR 3614252
[35] Noguera, C., Esteva, F., Godo, L.:
Generalized continuous and left-continuous t-norms arising from algebraic semantics for fuzzy logics. Inform. Sci. 180 (2010), 1354-1372.
DOI 10.1016/j.ins.2009.12.011 |
MR 2587910
[39] Ruiz, D., Torrens, J.:
Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38.
MR 2068596 |
Zbl 1249.94095
[40] Ruiz, D., Torrens, J.:
Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Systems 14 (2006), 2, 180-190.
DOI 10.1109/tfuzz.2005.864087
[41] Ruiz-Aguilera, D., Torrens, J.:
R-implications and S-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms. Fuzzy Sets Systems 160 (2009), 832-852.
DOI 10.1016/j.fss.2008.05.015 |
MR 2493278
[42] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J.:
Some remarks on the characterization of idempotent uninorms. In: IPMU 2010, LNAI 6178, Eds. E.Hüllermeier, R.Kruse and F.Hoffmann, Springer-Verlag Berlin Heidelberg 2010, pp. 425-434.
DOI 10.1007/978-3-642-14049-5_44
[44] Takács, M.: Uninorm-based models for FLC systems. J. Intell. Fuzzy Systems 19 (2008), 65-73.