Previous |  Up |  Next

Article

Keywords:
uninorm; internal operator; ordinal sum; residual implication; triangular subnorm
Summary:
This paper is devoted to the study of a class of left-continuous uninorms locally internal in the region $A(e)$ and the residual implications derived from them. It is shown that such uninorm can be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit expressions for the residual implication derived from this special class of uninorms are given. A set of axioms is presented that characterizes those binary functions $I: [0,1]^{2}\rightarrow[0,1]$ for which a uninorm $U$ of this special class exists in such a way that $I$ is the residual implications derived from $U$.
References:
[1] Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Inform. Sci. 180 (2010), 3992-4005. DOI 10.1016/j.ins.2010.06.023 | MR 2671753
[2] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas. World Scientific, New Jersey 2006. DOI 10.1142/9789812774200 | MR 2222258
[3] Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin, Herdelberg 2008. Zbl 1293.03012
[4] Baets, B. De: An order-theoretic approach to solving sup-T equations. In: Fuzzy Set Theory and Advanced Mathemtical Applications (D. Ruan, ed.), Kluwer, Dordrecht 1995, pp. 67-87. DOI 10.1007/978-1-4615-2357-4_3
[5] Baets, B. De, Fodor, J.: Residual operators of uninorms. Soft Comput. 3 (1999), 89-100. DOI 10.1007/s005000050057 | MR 2391544
[6] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Systems 104 (1999), 133-136. DOI 10.1016/s0165-0114(98)00265-6 | MR 1685816 | Zbl 0928.03060
[7] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1998), 631-642. DOI 10.1016/s0377-2217(98)00325-7 | Zbl 1178.03070
[8] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Seventh IFSA World Congress, Prague, 220 (1997), 215-220.
[9] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 1-14. DOI 10.1142/s021848850900570x | MR 2514519 | Zbl 1178.03070
[10] Clifford, A. H.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646. DOI 10.2307/2372706 | MR 0062118
[11] Csiszár, O., Fodor, J.: On uninorms with fixed values along their border. Ann. Univ. Sci. Bundapest., Sect. Com. 42 (2014), 93-108. MR 3275665
[12] Czogała, E., Drewniak, J.: Associative monotonic operations in fuzzy set theory. Fuzzy Sets Systems 12 (1984), 249-269. DOI 10.1016/0165-0114(84)90072-1 | MR 0740097
[13] Drygaś, P.: Discussion of the structure of uninorms. Kybernetika 41 (2005), 213-226. DOI 10.1016/j.fss.2015.05.018 | MR 2138769 | Zbl 1249.03093
[14] Drygaś, P.: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196. MR 2343394 | Zbl 1132.03349
[15] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Systems 161 (2010), 149-157. DOI 10.1016/j.fss.2009.09.017 | MR 2566236 | Zbl 1191.03039
[16] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of a class of uninorms with continuous underlying operators. Fuzzy Sets Systems 287 (2016), 137-153. DOI 10.1016/j.fss.2015.07.015 | MR 3447023
[17] Esteva, F., Godo, L.: Monoidal t-norm based logic: owards a logic for left-continuous t-norms. Fuzzy Sets Systems 124 (2001), 271-288. DOI 10.1016/s0165-0114(01)00098-7 | MR 1860848
[18] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. DOI 10.1142/s0218488597000312 | MR 1471619 | Zbl 1232.03015
[19] Fodor, J., Baets, B. De: A single-point characterization of representable uninorms. Fuzzy Sets Systems 202 (2012), 89-99. DOI 10.1016/j.fss.2011.12.001 | MR 2934788 | Zbl 1268.03027
[20] Hu, S., Li, Z.: The structure of continuous uninorms. Fuzzy Sets Systems 124 (2001), 43-52. DOI 10.1016/s0165-0114(00)00044-0 | MR 1859776
[21] Jenei, S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets Systems 126 (2002), 199-205. DOI 10.1016/s0165-0114(01)00040-9 | MR 1884686
[22] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[23] Klement, E. P., Mesiar, R., Pap, E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8 (2000), 707-717. DOI 10.1142/s0218488500000514 | MR 1803475
[24] Li, G., Liu, H-W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 591-604. DOI 10.1142/s0218488514500299 | MR 3252143
[25] Li, G., Liu, H-W., Fodor, J.: On almost equitable uninorms. Kybernetika 51(4) (2015), 699-711. DOI 10.14736/kyb-2015-4-0699 | MR 3423195
[26] Li, G., Liu, H-W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets Systems 287 (2016), 154-171. DOI 10.1016/j.fss.2015.01.019 | MR 3447024
[27] Li, G., Liu, H-W.: On Relations Between Several Classes of Uninorms. In: Fan TH., Chen SL., Wang SM., Li YM. (eds) Quantitative Logic and Soft Computing 2016. Advances in Intelligent Systems and Computing, vol. 510. Springer, 2017, pp. 251-259. DOI 10.1007/978-3-319-46206-6_25
[28] Li, G., Liu, H-W.: On properties of uninorms locally internal on the boundary. Fuzzy Sets Systems 332 (2017), 116-128. DOI 10.1016/j.fss.2017.07.014 | MR 3732254
[29] Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Systems 137(1) (2003), 27-42. DOI 10.1016/s0165-0114(02)00430-x | MR 1992696 | Zbl 1022.03038
[30] Massanet, S., Torrens, J.: The law of implication versus the exchange principle on fuzzy implications. Fuzzy Sets Systems 168 (2011), 47-69. DOI 10.1016/j.fss.2010.12.012 | MR 2772620
[31] Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Systems 29(3) (2015), 1021-1037. DOI 10.3233/ifs-151728 | MR 3414365
[32] Mesiarová, A.: Multi-polar t-conorms and uninorms. Inform. Sci. 301 (2015), 227-240. DOI 10.1016/j.ins.2014.12.060 | MR 3311790
[33] Mesiarová, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by their set of discontinuity points. IEEE Trans. Fuzzy Systems PP (2017), in press. MR 3614252
[34] Mesiarová, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction. Int. J. Approx. Reason. 87 (2017), 176-192. DOI 10.1016/j.ijar.2017.01.007 | MR 3614252
[35] Noguera, C., Esteva, F., Godo, L.: Generalized continuous and left-continuous t-norms arising from algebraic semantics for fuzzy logics. Inform. Sci. 180 (2010), 1354-1372. DOI 10.1016/j.ins.2009.12.011 | MR 2587910
[36] Petrík, M., Mesiar, R.: On the structure of special classes of uninorms. Fuzzy Sets Systems 240 (2014), 22-38. DOI 10.1016/j.fss.2013.09.013 | MR 3167510 | Zbl 1315.03099
[37] Pouzet, M., Rosenberg, I. G., Stone, M. G.: A projection property. Algebra Univers. 36(2) (1996), 159-184. DOI 10.1007/bf01234102 | MR 1402510
[38] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Systems 155 (2005), 446-458. DOI 10.1016/j.fss.2005.04.010 | MR 2181001 | Zbl 1077.03514
[39] Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38. MR 2068596 | Zbl 1249.94095
[40] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Systems 14 (2006), 2, 180-190. DOI 10.1109/tfuzz.2005.864087
[41] Ruiz-Aguilera, D., Torrens, J.: R-implications and S-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms. Fuzzy Sets Systems 160 (2009), 832-852. DOI 10.1016/j.fss.2008.05.015 | MR 2493278
[42] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: IPMU 2010, LNAI 6178, Eds. E.Hüllermeier, R.Kruse and F.Hoffmann, Springer-Verlag Berlin Heidelberg 2010, pp. 425-434. DOI 10.1007/978-3-642-14049-5_44
[43] Ruiz-Aguilera, D., Torrens, J.: A characterization of discrete uninorms having smooth underlying operators. Fuzzy Sets Syst. 268 (2015), 44-58. DOI 10.1016/j.fss.2014.10.020 | MR 3320246
[44] Takács, M.: Uninorm-based models for FLC systems. J. Intell. Fuzzy Systems 19 (2008), 65-73.
[45] Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. DOI 10.1016/0165-0114(95)00133-6 | MR 1389951 | Zbl 0871.04007
[46] Yager, R., Rybalov, A.: Bipolar aggregation using the uninorms. Fuzzy Optim. Decis. Making 10 (2011), 59-70. DOI 10.1007/s10700-010-9096-8 | MR 2799503
[47] Yager, R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Systems 122 (2001), 167-175. DOI 10.1016/s0165-0114(00)00027-0 | MR 1839955 | Zbl 0978.93007
Partner of
EuDML logo