[1] Balbes, R., Dwinger, Ph.:
Distributive Lattices. University of Missouri Press 1974.
MR 0373985
[4] Buşneag, D., Piciu, D., Paralescu, J.:
Divisible and semi-divisible residuated lattices. Ann. Alexandru Ioan Cuza University-Mathematics (2013), 14-45.
MR 3678670
[5] Buşneag, D., Piciu, D., Holdon, L. C.:
Some Properties of Ideals in Stonean residuated lattice. J. Multiple-Valued Logic Soft Computing 24 (2015), 5-6, 529-546.
MR 3305879
[9] Maroof, F. G., Saeid, A. B., Eslami, E.:
On co-annihilators in residuated lattices. J. Intelligent Fuzzy Systems 31 (2016), 1263-1270.
DOI 10.3233/ifs-162192
[10] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.:
Residuated Lattices: an Algebraic Glimpse at Substructural Logics. Studies in Logics and the Foundations of Mathematics, Elsevier 2007.
MR 2531579
[11] Holdon, L. C., Niţu, L. M., Chiriac, G.:
Distributive residuated lattices. Ann. University of Craiova-Mathematics and Computer Science Series 39 (2012), 100-109.
MR 2979958
[13] Iorgulescu, A.:
Algebras of Logic as BCK-algebras. Academy of Economic Studies Bucharest, Romania 2008.
MR 2542102
[14] Leuştean, L.:
Baer extensions of BL-algebras. J. Multiple-Valued Logic Soft Computing 12 (2006), 321-335.
MR 2288820
[15] Piciu, D.: Algebras of Fuzzy Logic. Editura Universitaria, Craiova 2007.
[16] Rachunek, J., Salounova, D.: Ideals and involutive filters in residuated lattices. In: SSAOS 2014, Stara Lesna.
[17] Turunen, E.:
Mathematics Behind Fuzzy logic. Physica-Verlag Heidelberg, New York 1999.
MR 1716958