Previous |  Up |  Next

Article

Keywords:
max-min algebra; interval; eigenspace; simple image set
Summary:
A matrix $A$ is said to have \mbox{\boldmath$X$}-simple image eigenspace if any eigenvector $x$ belonging to the interval $\mbox{\boldmath$X$}=\{x\colon \underline x\leq x\leq\overline x\}$ containing a constant vector is the unique solution of the system $A\otimes y=x$ in \mbox{\boldmath$X$}. The main result of this paper is an extension of \mbox{\boldmath$X$}-simplicity to interval max-min matrix $\mbox{\boldmath$A$}=\{A\colon \underline A\leq A\leq\overline A\}$ distinguishing two possibilities, that at least one matrix or all matrices from a given interval have \mbox{\boldmath$X$}-simple image eigenspace. \mbox{\boldmath$X$}-simplicity of interval matrices in max-min algebra are studied and equivalent conditions for interval matrices which have \mbox{\boldmath$X$}-simple image eigenspace are presented. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that have been studied in max-min and max-plus algebras.
References:
[1] Butkovič, P.: Simple image set of $(\max,+)$ linear mappings. Discrete Appl. Math. 105 (2000), 73-86. DOI 10.1016/s0166-218x(00)00212-2 | MR 1780462 | Zbl 0976.15013
[2] Butkovič, P.: Max-linear Systems: Theory and Applications. Springer, 2010. DOI 10.1007/978-1-84996-299-5
[3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices. SIAM J. Control Optim. 50 (2012), 5, 3029-3051. DOI 10.1007/978-1-84996-299-5 | MR 3022097
[4] Cechlárová, K.: Efficient computation of the greatest eigenvector in fuzzy algebra. Tatra Mt. Math. Publ. 12 (1997), 73-79. DOI 10.1016/0024-3795(92)90302-q | MR 1607194 | Zbl 0963.65041
[5] Nola, A. Di, Gerla, B.: Algebras of Łukasiewicz logic and their semiring reducts. In: Idempotent Mathematics and Mathematical Physics (G. L. Litvinov and V. P. Maslov, eds.), 2005, pp. 131-144. DOI 10.1090/conm/377/06988 | MR 2149001
[6] Nola, A. Di, Russo, C.: Łukasiewicz transform and its application to compression and reconstruction of digital images. Inform. Sci. 177 (2007), 1481-1498. DOI 10.1016/j.ins.2006.09.002 | MR 2307173 | Zbl 1114.06009
[7] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients. Int. J. Pure Applied Math. 45 (2008), 533-542. MR 2426231 | Zbl 1154.65036
[8] Gavalec, M.: Periodicity in Extremal Algebra. Gaudeamus, Hradec Králové 2004.
[9] Gavalec, M., Plavka, J.: Fast algorithm for extremal biparametric eigenproblem. Acta Electrotechnica et Informatica 7 (2007), 3, 1-5.
[10] Golan, J. S.: Semirings and Their Applications. Springer, 1999. DOI 10.1007/978-94-015-9333-5_8 | MR 1746739 | Zbl 0947.16034
[11] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms. Springer 2008. DOI 10.1007/978-0-387-75450-5 | MR 2389137 | Zbl 1201.16038
[12] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work. Princeton University Press, 2005. DOI 10.1515/9781400865239 | MR 2188299
[13] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications. Kluwer, Dordrecht 1997. DOI 10.1007/978-94-015-8901-7 | MR 1447629 | Zbl 0941.93001
[14] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, R.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer Academic Publishers, Dordrecht-Boston-London 1998. MR 1491092 | Zbl 0945.68077
[15] Litvinov, G. L., (eds.), V. P. Maslov: Idempotent Mathematics and Mathematical Physics. AMS Contemporary Mathematics 377 (2005). DOI 10.1090/conm/377 | MR 2148995 | Zbl 1069.00011
[16] Litvinov, G. L., (eds.), S. N. Sergeev: Tropical and Idempotent Mathematics. AMS Contemporary Mathematics 495 (2009). DOI 10.1090/conm/495 | MR 2560756 | Zbl 1291.00065
[17] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices. Linear Algebra Appl. 438 (2013), 8, 3350-3364. DOI 10.1016/j.laa.2012.12.020 | MR 3023281
[18] Myšková, H.: Interval eigenvectors of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 57-61. DOI 10.2478/v10198-012-0033-3
[19] Myšková, H.: Weak stability of interval orbits of circulant matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 3, 51-56. DOI 10.2478/v10198-012-0032-4
[20] Myšková, H.: Robustness of interval toeplitz matrices in fuzzy algebra. Acta Electrotechnica et Informatica 12 (2012), 4, 56-60. DOI 10.2478/v10198-012-0048-9
[21] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra. Discrete Applied Math. 159 (2011), 5, 381-388. DOI 10.1016/j.dam.2010.11.020 | MR 2755915 | Zbl 1225.15027
[22] Plavka, J., Szabó, P.: The $O(n^2 )$ algorithm for the eigenproblem of an $\epsilon$-triangular Toeplitz matrices in max-plus algebra. Acta Electrotechnica et Informatica 9 (2009), 4, 50-54.
[23] Plavka, J.: On the weak robustness of fuzzy matrices. Kybernetika 49 (2013), 1, 128-140. MR 3097386 | Zbl 1267.15026
[24] Plavka, J., Sergeev, S.: Characterizing matrices with $X $-simple image eigenspace in max-min semiring. Kybernetika 52 (2016), 4, 497-513. DOI 10.14736/kyb-2016-4-0497 | MR 3565766
[25] Rohn, J.: Systems of linear interval equations. Linear Algebra and Its Appl.126 (1989), 39-78. DOI 10.1016/0024-3795(89)90004-9 | MR 1040771 | Zbl 1061.15003
[26] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets Systems 1 (1978), 69-74. DOI 10.1016/0165-0114(78)90033-7 | MR 0494745 | Zbl 0366.04001
[27] Sergeev, S.: Max-algebraic attraction cones of nonnegative irreducible matrices. Linear Algebra Appl. 435 (2011), 7, 1736-1757. DOI 10.1016/j.laa.2011.02.038 | MR 2810668 | Zbl 1226.15017
[28] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices. Linear Algebra Appl. 283 (1998), 257-272. DOI 10.1016/s0024-3795(98)10105-2 | MR 1657171 | Zbl 0932.15005
[29] Tan, Yi-Jia: On the eigenproblem of matrices over distributive lattices. Lin. Algebra Appl. 374 (2003), 87-106. DOI 10.1016/s0024-3795(03)00550-0 | MR 2008782
[30] Zimmernann, K.: Extremální algebra (in Czech). Ekonomický ústav ČSAV Praha, 1976.
Partner of
EuDML logo