Previous |  Up |  Next

Article

Keywords:
best proximity point; proximal weak contraction mapping; proximal Berinde nonexpansive mapping; starshaped set
Summary:
In this paper, we introduce the new concept of proximal mapping, namely proximal weak contractions and proximal Berinde nonexpansive mappings. We prove the existence of best proximity points for proximal weak contractions in metric spaces, and for proximal Berinde nonexpansive mappings on starshape sets in Banach spaces. Examples supporting our main results are also given. Our main results extend and generalize some of well-known best proximity point theorems of proximal nonexpansive mappings in the literatures.
References:
[1] Basha, S.S.: Best proximity points: optimal solutions. J. Optim. Theory Appl. 151 (1) (2011), 210–216. DOI 10.1007/s10957-011-9869-4 | MR 2836473
[2] Basha, S.S., Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory 103 (1) (2000), 119–129. DOI 10.1006/jath.1999.3415 | MR 1744381
[3] Berinde, V.: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 9 (2004), 43–53. MR 2111366
[4] Chen, J., Xiao, S., Wang, H., Deng, S.: Best proximity point for the proximal nonexpansive mapping on the starshaped sets. Fixed Point Theory and Applications 19 (2015). MR 3306103
[5] Eldred, A.A., Veeramani, P.: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2) (2006), 1001–1006. DOI 10.1016/j.jmaa.2005.10.081 | MR 2260159
[6] Fan, K.: A generalization of Tychoff’s fixed point theorem. Math. Ann. 142 (1961), 305–310. DOI 10.1007/BF01353421 | MR 0131268
[7] Gabeleh, M.: Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces. J. Optim. Theory Appl. 158 (2) (2013), 615–625. DOI 10.1007/s10957-012-0246-8 | MR 3084393
[8] Gabeleh, M.: Global optimal solutions of non-self mappings. UPB Sci. Bull., Series A: App. Math. Phys. 75 (2014), 67–74. MR 3130208
[9] Gabeleh, M.: Best proximity point theorems via proximal non-self mappings. J. Optim. Theory Appl. 164 (2015), 565–576. DOI 10.1007/s10957-014-0585-8 | MR 3297978
[10] Kim, W.K.: Existence of equilibrium pair in best proximity settings. Appl. Math. Sci. 9 (13) (2015), 629–636.
[11] Kim, W.K., Kum, S., Lee, K.H.: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68 (2008), 2216–2227. MR 2398644
[12] Kim, W.K., Lee, K.H.: Existence of best proximity pairs and equilibrium pairs. J. Math. Anal. Appl. 316 (2006), 433–446. DOI 10.1016/j.jmaa.2005.04.053 | MR 2206681
[13] Kirk, W.A., Reich, S., Veeramani, P.: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24 (7–8) (2003), 851–862. DOI 10.1081/NFA-120026380 | MR 2011594
[14] Kosuru, G.S.R., Veeramani, P.: A note on existence and convergence of best proximity points for pointwise cyclic contractions. Numer. Funct. Anal. Optim. 32 (7) (2011), 821–830. DOI 10.1080/01630563.2011.578900 | MR 2801379
[15] Prolla, J.B.: Fixed-point theorems for set-valued mappings and existence of best approximants. Numer. Funct. Anal. Optim. 5 (4) (1983), 449–455. DOI 10.1080/01630568308816149 | MR 0703107
[16] Raj, V.S.: A best proximity point theorem for weakly contractive non-self mappings. Nonlinear Anal. TMA 74 (14) (2011), 4804–4808. MR 2810719
[17] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62 (1) (1978), 104–113. DOI 10.1016/0022-247X(78)90222-6 | MR 0514991
[18] Sehgal, V.M., Singh, S.P.: A generalization to multifunctions of Fan’s best approximation theorem. Proc. Amer. Math. Soc. 102 (3) (1988), 534–537. MR 0928974
[19] Sehgal, V.M., Singh, S.P.: A theorem on best approximations. Numer. Funct. Anal. Optim. 10 (1–2) (1989), 181–184. DOI 10.1080/01630568908816298 | MR 0978810
[20] Suzuki, T.: A generalized Banach contraction principle which characterizes metric completeness. Proc. Amer. Math. Soc. 136 (2008), 1861–1869. DOI 10.1090/S0002-9939-07-09055-7 | MR 2373618
[21] Veeramani, P., Kirk, W.A., Eldred, A.A.: Proximal normal structure and relatively nonexpansive mappings. Stud. Math. 171 (3) (2005), 283–293. DOI 10.4064/sm171-3-5 | MR 2188054
[22] Vetrivel, V., Veeramani, P., Bhattacharyya, P.: Some extensions of Fan’s best approximation theorem. Numer. Funct. Anal. Optim. 13 (3–4) (1992), 397–402. DOI 10.1080/01630569208816486 | MR 1179367
Partner of
EuDML logo