Previous |  Up |  Next

Article

Keywords:
weak normal; quasinormal family; holomorphic curve; meromorphic mappings
Summary:
In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in $\mathbb{C}$ into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.
References:
[1] Aladro, G., Krantz, S.G.: A criterion for normality in $\mathbb{C}^n$. J. Math. Anal. Appl. 161 (1991), 1–8. DOI 10.1016/0022-247X(91)90356-5 | MR 1127544
[2] Bar, R., Grahl, J., Nevo, S.: Differential inequalities and quasinormal families. Anal. Math. Phys. 4 (2004), 66–71. MR 3215192
[3] Chuang, C.T.: Normal families of meromorphic functions. World Scientific Publishing Co. Pte. Ltd., 1993. MR 1249270
[4] Dethloff, G., Thai, D.D., Trang, P.N.T.: Normal families of meromorphic mappings of several complex variables for moving hypersurfaces in a complex projective space. Nagoya Math. J. 217 (2015), 23–59. DOI 10.1215/00277630-2863882 | MR 3343838
[5] Fujimoto, H.: On families of meromorphic maps into the complex projective space. Nagoya Math. J. 54 (1974), 21–51. DOI 10.1017/S0027763000024570 | MR 0367301
[6] Mai, P.N., Thai, D.D., Trang, P.N.T.: Normal families of meromorphic mappings of several complex variables into $¶^N(\mathbb{C})$. Nagoya Math. J. 180 (2005), 91–110. DOI 10.1017/S002776300000920X | MR 2186670
[7] Nevo, S., Pang, X., Zalcman, L.: Quasinormality and meromorphic functions with multiple zeros. J. d'Analyse Math. 101 (2007), 1–23. DOI 10.1007/s11854-007-0001-5 | MR 2346538
[8] Noguchi, J., Ochiai, T.: Introduction to geometric function theory in several complex variables. Transl. Math. Monogr. (1990). DOI 10.1090/mmono/080 | MR 1084378
[9] Noguchi, J., Winkelmann, J.: Holomorphic curves and integral points off divisors. Math. Z. 239 (2002), 593–610. DOI 10.1007/s002090100327 | MR 1893854
[10] Pang, X., Nevo, S., Zalcman, L.: Quasinormal families of meromorphic functions. Rev. Mat. Iberoamericana 21 (2005), 249–262. DOI 10.4171/RMI/422 | MR 2155021
[11] Quang, S.D.: Extension and normality of meromorphic mappings into complex projective varieties. Ann. Polon. Math. 104 (2012), 279–292. DOI 10.4064/ap104-3-5 | MR 2914536
[12] Quang, S.D., Tan, T.V.: Normal families of meromorphic mappings of several complex variables into $\mathbb{C}P^n$ for moving hypersurfaces. Ann. Polon. Math. 94 (2008), 97–110. DOI 10.4064/ap94-2-1 | MR 2438852
[13] Stoll, W.: Normal families of non-negative divisors. Math. Z. 84 (1964), 154–218. DOI 10.1007/BF01117123 | MR 0165142
[14] Thai, D.D., Trang, P.N.T., Huong, P.D.: Families of normal maps in several complex variables and hyperbolicity of complex spaces. Complex Var. Elliptic Equ. 48 (2003), 469–482. MR 1979525
[15] Zalcman, L.: Normal families, new perspectives. Bull. Amer. Math. Soc. 35 (1998), 215–230. DOI 10.1090/S0273-0979-98-00755-1 | MR 1624862
Partner of
EuDML logo