Previous |  Up |  Next

Article

Keywords:
Ilmanen lemma; $ C^{1,\omega} $ function; semiconvex function with general modulus
Summary:
We prove that for a normed linear space $ X $, if $ f_1\colon X\to\mathbb{R} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\to\mathbb{R} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\leq f_2 $, then there exists $ f\in C^{1,\omega}(X) $ such that $ f_1\leq f\leq f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega(t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^{1,\omega}_{{loc}} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.
References:
[1] Bernard P.: Lasry-Lions regularization and a lemma of Ilmanen. Rend. Semin. Mat. Univ. Padova 124 (2010), 221–229. DOI 10.4171/RSMUP/124-15 | MR 2752687
[2] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR 2041617 | Zbl 1095.49003
[3] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, 178, Springer, New York, 1998. MR 1488695
[4] Duda J., Zajíček L.: Semiconvex functions: representations as suprema of smooth functions and extensions. J. Convex Anal. 16 (2009), no. 1, 239–260. MR 2531202
[5] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces. J. Convex Anal. 20 (2013), no. 2, 573–598. MR 3098482
[6] Fathi A., Figalli A.: Optimal transportation on non-compact manifolds. Israel J. Math. 175 (2010), 1–59. DOI 10.1007/s11856-010-0001-5 | MR 2607536
[7] Fathi A., Zavidovique M.: Ilmanen's lemma on insertion of $ C^{1,1} $ functions. Rend. Semin. Mat. Univ. Padova 124 (2010), 203–219. DOI 10.4171/RSMUP/124-14 | MR 2752686
[8] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. MR 3244144 | Zbl 1329.00102
[9] Ilmanen T.: The level-set flow on a manifold. Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193–204. MR 1216585
[10] Jourani A., Thibault L., Zagrodny D.: $ C^{1,\omega (\cdot)} $-regularity and Lipschitz-like properties of subdifferential. Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223. DOI 10.1112/plms/pdr062 | MR 2948792
[11] Koc M., Kolář J.: Extensions of vector-valued functions with preservation of derivatives. J. Math. Anal. Appl. 449 (2017), no. 1, 343–367. DOI 10.1016/j.jmaa.2016.11.080 | MR 3595207
[12] Kryštof V.: Semiconvex Functions and Their Differences. Master Thesis, Charles University, Praha, 2016 (Czech).
[13] Rolewicz S.: On $ \alpha(\cdot ) $-paraconvex and strongly $ \alpha(\cdot ) $-paraconvex functions. Control Cybernet. 29 (2000), no. 1, 367–377. MR 1775171
[14] Rolewicz S.: On the coincidence of some subdifferentials in the class of $ \alpha(\cdot ) $-paraconvex functions. Optimization 50 (2001), no. 5–6, 353–360. DOI 10.1080/02331930108844568 | MR 1892909
[15] Toruńczyk H.: Smooth partitions of unity on some non-separable Banach spaces. Studia Math. 46 (1973), 43–51. DOI 10.4064/sm-46-1-43-51 | MR 0339255
Partner of
EuDML logo