[2] Cannarsa P., Sinestrari C.:
Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004.
MR 2041617 |
Zbl 1095.49003
[3] Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R.:
Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, 178, Springer, New York, 1998.
MR 1488695
[4] Duda J., Zajíček L.:
Semiconvex functions: representations as suprema of smooth functions and extensions. J. Convex Anal. 16 (2009), no. 1, 239–260.
MR 2531202
[5] Duda J., Zajíček L.:
Smallness of singular sets of semiconvex functions in separable Banach spaces. J. Convex Anal. 20 (2013), no. 2, 573–598.
MR 3098482
[7] Fathi A., Zavidovique M.:
Ilmanen's lemma on insertion of $ C^{1,1} $ functions. Rend. Semin. Mat. Univ. Padova 124 (2010), 203–219.
DOI 10.4171/RSMUP/124-14 |
MR 2752686
[8] Hájek P., Johanis M.:
Smooth Analysis in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014.
MR 3244144 |
Zbl 1329.00102
[9] Ilmanen T.:
The level-set flow on a manifold. Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193–204.
MR 1216585
[10] Jourani A., Thibault L., Zagrodny D.:
$ C^{1,\omega (\cdot)} $-regularity and Lipschitz-like properties of subdifferential. Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223.
DOI 10.1112/plms/pdr062 |
MR 2948792
[12] Kryštof V.: Semiconvex Functions and Their Differences. Master Thesis, Charles University, Praha, 2016 (Czech).
[13] Rolewicz S.:
On $ \alpha(\cdot ) $-paraconvex and strongly $ \alpha(\cdot ) $-paraconvex functions. Control Cybernet. 29 (2000), no. 1, 367–377.
MR 1775171
[14] Rolewicz S.:
On the coincidence of some subdifferentials in the class of $ \alpha(\cdot ) $-paraconvex functions. Optimization 50 (2001), no. 5–6, 353–360.
DOI 10.1080/02331930108844568 |
MR 1892909