[1] Braß P.:
On equilateral simplices in normed spaces. Beiträge Algebra Geom. 40 (1999), no. 2, 303–307.
MR 1720106
[2] Elton J., Odell E.:
The unit ball of every infinite-dimensional normed linear space contains a $(1+\varepsilon)$-separated sequence. Colloq. Math. 44 (1981), no. 1, 105–109.
DOI 10.4064/cm-44-1-105-109 |
MR 0633103
[3] Glakousakis E., Mercourakis S.:
On the existence of $1$-separated sequences on the unit ball of a finite-dimensional Banach space. Mathematika 61 (2015), no. 3, 547–558.
DOI 10.1112/S002557931400028X |
MR 3415641
[4] Kilbane J.:
On embeddings of finite subsets of $l_2$. available at arXiv:1609.08971v2 [math.FA] (2016), 12 pages.
MR 3767362
[6] Ostrovskii M. I.:
Metric Embeddings. Bilipschitz and Coarse Embeddings into Banach Spaces. De Gruyter Studies in Mathematics, 49, De Gruyter, Berlin, 2013.
MR 3114782
[8] Swanepoel K. J.:
Equilateral sets in finite-dimensional normed spaces. Seminar of Mathematical Analysis, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, 2004, pp. 195–237.
MR 2117069
[11] Talagrand M.:
Sur les espaces de Banach contenant $l_1(\tau)$. Israel J. Math. 40 (1981) no. 3–4, 324–330 (French. English summary).
DOI 10.1007/BF02761372 |
MR 0654587