Previous |  Up |  Next

Article

Keywords:
concave metric space; isometric embedding; separated set
Summary:
Let $(M,d)$ be a bounded countable metric space and $c>0$ a constant, such that $d(x,y)+d(y,z)-d(x,z)\geq c$, for any pairwise distinct points $x,y,z$ of $M$. For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of $\ell_\infty $.
References:
[1] Braß P.: On equilateral simplices in normed spaces. Beiträge Algebra Geom. 40 (1999), no. 2, 303–307. MR 1720106
[2] Elton J., Odell E.: The unit ball of every infinite-dimensional normed linear space contains a $(1+\varepsilon)$-separated sequence. Colloq. Math. 44 (1981), no. 1, 105–109. DOI 10.4064/cm-44-1-105-109 | MR 0633103
[3] Glakousakis E., Mercourakis S.: On the existence of $1$-separated sequences on the unit ball of a finite-dimensional Banach space. Mathematika 61 (2015), no. 3, 547–558. DOI 10.1112/S002557931400028X | MR 3415641
[4] Kilbane J.: On embeddings of finite subsets of $l_2$. available at arXiv:1609.08971v2 [math.FA] (2016), 12 pages. MR 3767362
[5] Mercourakis S. K., Vassiliadis G.: Equilateral sets in infinite dimensional Banach spaces. Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212. DOI 10.1090/S0002-9939-2013-11746-6 | MR 3119196
[6] Ostrovskii M. I.: Metric Embeddings. Bilipschitz and Coarse Embeddings into Banach Spaces. De Gruyter Studies in Mathematics, 49, De Gruyter, Berlin, 2013. MR 3114782
[7] Partington J. R.: Subspaces of certain Banach sequence spaces. Bull. London Math. Soc. 13 (1981), no. 2, 162–166. DOI 10.1112/blms/13.2.162 | MR 0608103
[8] Swanepoel K. J.: Equilateral sets in finite-dimensional normed spaces. Seminar of Mathematical Analysis, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, 2004, pp. 195–237. MR 2117069
[9] Swanepoel K. J., Villa R.: A lower bound for the equilateral number of normed spaces. Proc. Amer. Math. Soc. 136 (2008), no. 1, 127–131. DOI 10.1090/S0002-9939-07-08916-2 | MR 2350397
[10] Swanepoel K. J., Villa R.: Maximal equilateral sets. Discrete Comput. Geom. 50 (2013) no. 2, 354–373. DOI 10.1007/s00454-013-9523-z | MR 3090523
[11] Talagrand M.: Sur les espaces de Banach contenant $l_1(\tau)$. Israel J. Math. 40 (1981) no. 3–4, 324–330 (French. English summary). DOI 10.1007/BF02761372 | MR 0654587
Partner of
EuDML logo