[3] Castillo J. M. F., Sanchez F.:
Dunford-Pettis like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59.
MR 1245024
[4] Diestel J.:
A survey of results related to the Dunford-Pettis property. Proc. of Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, 1979, Contemp. Math. 2 Amer. Math. Soc., Providence, 1980, pp. 15–60.
MR 0621850 |
Zbl 0571.46013
[5] Diestel J.:
Sequences and Series in Banach Spaces. Graduate Texts in Mathematics, 92, Springer, New York, 1984.
MR 0737004
[6] Diestel J., Jarchow H., Tonge A.:
Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
MR 1342297 |
Zbl 1139.47021
[7] Diestel J., Uhl J. J. Jr.:
Vector Measures. Mathematical Surveys, 15, American Mathematical Society, Providence, 1977.
MR 0453964 |
Zbl 0521.46035
[10] Emmanuele G.:
A remark on the containment of $c_{0}$ in spaces of compact operators. Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 2, 331–335.
DOI 10.1017/S0305004100075435 |
MR 1142753
[12] Feder M.:
On subspaces of spaces with an unconditional basis and spaces of operators. Illinois J. Math. 24 (1980), no. 2, 196–205.
MR 0575060
[14] Ghenciu I.:
The $p$-Gelfand Phillips property in spaces of operators and Dunford-Pettis like sets. available at arXiv:1803.00351v1 [math.FA] (2018), 16 pages.
MR 2283818
[15] Ghenciu I., Lewis P.:
The Dunford-Pettis property, the Gelfand-Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324.
DOI 10.4064/cm106-2-11 |
MR 2283818
[17] John K.:
On the uncomplemented subspace $ K(X,Y)$. Czechoslovak Math. J. 42(117) (1992), no. 1, 167–173.
MR 1152178
[21] Pełczyński A.:
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295 |
Zbl 0107.32504
[22] Salimi M., Moshtaghiun S. M.:
The Gelfand-Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92.
DOI 10.15352/bjma/1313363004 |
MR 2792501