[2] Baumslag G.:
Topics in Combinatorial Group Theory. Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 1993.
MR 1243634
[3] Culik K. II, Karhumäki J.:
On the equality sets for homomorphisms on free monoids with two generators. RAIRO Inform. Théor. 14 (1980), no. 4, 349–369.
DOI 10.1051/ita/1980140403491 |
MR 0607436
[4] Day J. D., Reidenbach D., Schneider J. C.:
On the dual post correspondence problem. Internat. J. Found. Comput. Sci. 25 (2014), no. 8, 1033–1048.
MR 3315805
[6] Ehrenfeucht A., Karhumäki J., Rozenberg G.:
The (generalized) Post correspondence problem with lists consisting of two words is decidable. Theoret. Comput. Sci. 21 (1982), no. 2, 119–144.
DOI 10.1016/0304-3975(89)90080-7 |
MR 0677104
[7] Ehrenfeucht A., Karhumäki J., Rozenberg G.:
On binary equality sets and a solution to the test set conjecture in the binary case. J. Algebra 85 (1983), no. 1, 76–85.
DOI 10.1016/0021-8693(83)90119-9 |
MR 0723068
[8] Hadravová J.: Structure of Equality Sets. PhD. Thesis, Charles University in Prague, Praha, 2015.
[9] Hadravová J., Holub Š.:
Equation $x^iy^jx^k=u^iv^ju^k$ in words. Language and Automata Theory and Applications, Lecture Notes in Comput. Sci., Springer, Cham, 2015, pp. 414–423.
MR 3344820
[11] Halava V., Holub Š.:
Binary (Generalized) Post Correspondence Problem is in $P$. TUCS Technical Report, 785, Turku, 2006.
MR 2081369
[12] Holub Š.:
A unique structure of two-generated binary equality sets. Developments in Language Theory (Ito M., ed.), 6th International Conf., Kyoto, 2002, Lecture Notes in Comput. Sci., 2450, Springer, Berlin, 2003, pp. 245–257.
MR 2177348 |
Zbl 1015.68089
[14] Holub Š.: Binary equality languages for periodic morphisms. Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory, RIMS Kokyuroku, 1366, Kyoto University, 2004, pp. 1880–2818.
[15] Karhumäki J., Maňuch J., Plandowski W.:
On defect effect of bi-infinite words. Mathematical Foundations of Computer Science, 1998 (Brno), Lecture Notes in Comput. Sci., 1450, Springer, Berlin, 1998, pp. 674–682.
MR 1684115
[16] Lothaire M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, Cambridge, 2002.
[18] Maňuch J.: Defect Theorems and Infinite Words. TUCS Dissertations, 41, Turku, 2002.
[20] Rozenberg G., Salomaa A., eds.:
Handbook of Formal Languages, Vol. 1: Word, Language, Grammar. Springer, New York, 1997.
MR 1469993
[21] Spehner J.-C.: Quelques problèmes d'extension, de conjugaison et de presentation des sous-monoïdes d'un monoïde libre. Thèse, Université Paris VII, Paris, 1976 (French).