Previous |  Up |  Next

Article

Keywords:
orthogonality of operations; retract orthogonality of operations; complement of orthogonal operations; block-wise recursive algorithm
Summary:
G. B. Belyavskaya and G. L. Mullen showed the existence of a complement for a $k$-tuple of orthogonal $n$-ary operations, where $k<n$, to an $n$-tuple of orthogonal $n$-ary operations. But they proposed no method for complementing. In this article, we give an algorithm for complementing a $k$-tuple of orthogonal $n$-ary operations to an $n$-tuple of orthogonal $n$-ary operations and an algorithm for complementing a $k$-tuple of orthogonal $k$-ary operations to an $n$-tuple of orthogonal $n$-ary operations. Also we find some estimations of the number of complements.
References:
[1] Aczél J., Dhombres J.: Functional Equations in Several Variables. With applications to Mathematics, Information Theory and to the Natural and Social Sciences. Encyclopedia of Mathematics and Its Applications, 31, Cambridge University Press, Cambridge, 1989. MR 1004465
[2] Bektenov A. S., Jakubov T.: Systems of orthogonal $n$-ary operations. Bul. Akad. Štiince RSS Moldoven. (1974), no. 3, 7–14, 93 (Russian). MR 0360905
[3] Belyavskaya G. B., Mullen G. L.: Orthogonal hypercubes and $n$-ary operations. Quasigroups Related Systems 13 (2005), no. 1, 73–86. MR 2206148 | Zbl 1101.20049
[4] Couselo E., Gonzalez S., Markov V., Nechaev A.: Recursive MDS-codes and recursively differentiable quasigroups. Discrete Math. Appl. 8 (1998), no. 3, 217–245; doi: 10.1515/dma.1998.8.3.217. DOI 10.1515/dma.1998.8.3.217 | MR 1673150
[5] Dougherty S. T., Szczepanski T. A.: Latin $k$-hypercubes. Australas. J. Combin. 40 (2008), 145–160. MR 2381422
[6] Ethier J. T., Mullen G. L.: Strong forms of orthogonality for sets of hypercubes. Discrete Math. 312 (2012), no. 12–13, 2050–2061; doi: 10.1016/j.disc.2012.03.008. DOI 10.1016/j.disc.2012.03.008 | MR 2920865
[7] Evans T.: The construction of orthogonal $k$-skeins and latin $k$-cubes. Aequationes Math. 14 (1976), no. 3, 485–491. DOI 10.1007/BF01835999 | MR 0414396
[8] Fryz I. V.: Orthogonality and retract orthogonality of operations. to appear in Bul. Akad. Štiince RSS Moldoven.
[9] Fryz I. V., Sokhatsky F. M.: Block composition algorithm for constructing orthogonal $n$-ary operations. Discrete Math. 340 (2017), no. 8, 1957–1966; doi: 10.1016/j.disc.2016.11.012. DOI 10.1016/j.disc.2016.11.012 | MR 3648223
[10] Keedwell A. D., Dénes J.: Latin Squares and Their Applications. Elsevier/North Holland, Amsterdam, 2015. MR 3495977
[11] Markovski S., Mileva A.: On construction of orthogonal $d$-ary operations. Publ. Inst. Math. (Beograd) (N.S.) 101(115) (2017), 109–119; doi: 10.2298/PIM1715109M. DOI 10.2298/PIM1715109M | MR 3700406
[12] Sokhatsky F. M., Krainichuk H. V.: Solution of distributive-like quasigroup functional equations. Comment. Math. Univ. Carolin. 53 (2012), no. 3, 447–459. MR 3017842
[13] Trenkler M.: On orthogonal latin $p$-dimensional cubes. Czechoslovak Math. J. 55(130) (2005), no. 3, 725–728; doi: 10.1007/s10587-005-0060-7. DOI 10.1007/s10587-005-0060-7 | MR 2153097
Partner of
EuDML logo