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Binary equality words with two b’s

Štěpán Holub, Jiř́ı Sýkora

Abstract. Deciding whether a given word is an equality word of two nonperiodic
morphisms is also known as the dual Post correspondence problem. Although
the problem is decidable, there is no practical decision algorithm. Already in
the binary case, the classification is a large project dating back to 1980s. In this
paper we give a full classification of binary equality words in which one of the
letters has two occurrences.

Keywords: equality languages; dual Post correspondence problem; periodicity
forcing

Classification: 68R15

1. Introduction

Equality sets of morphisms have been of interest for over seventy years. In 1946,
E. L. Post published (see [19]) one of the most famous undecidable problems, which
is now known as the Post correspondence problem (PCP). In algebraic terms, we
ask whether there exists an equality word for two morphisms g and h. More
specifically, we have two morphisms g and h from {a1, a2, . . . , aN}∗ to Σ∗ and we
ask whether there exists a word w ∈ {a1, a2, . . . , aN}+ such that g(w) = h(w).
While PCP is undecidable, its binary version, i.e. when N = 2, was proved to be
decidable, see [6] (complete proof in [10]), even in polynomial time, see [11]. This
naturally led to interest in binary equality sets — the sets of all equality words
for binary morphisms. They were first intensively studied in 1980 in [3], but the
classification remains incomplete even today. The cases when one or both of the
morphisms are periodic are relatively easy (see [14] and [7]). In case when both
of the morphisms are nonperiodic, their equality set is generated by at most two
words (see [13]). The equality sets with exactly two generators were described
in [12].

Therefore, it remains to consider situations when two nonperiodic morphisms
have an equality set generated by a single word. J. Hadravová and Š. Holub exam-
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ined this situation thoroughly; their latest results were summarized in J. Hadra-
vová’s PhD thesis (see [8]). In [9], the authors proved that the equation xiyjxk =
uivjuk if j ≥ 3 and i + k ≥ 3 has only periodic solutions. That implies that the
word aibjak with j ≥ 3 and i+ k ≥ 3 cannot be an equality word for nonperiodic
morphisms. They found a nonperiodic solution for j = 2 and i = k + 1, but also
conjectured that there are no nonperiodic solutions for j = 2 when |i − k| ≥ 2.
In this paper, we show that their conjecture holds. Using this key result, we are
able to classify all binary equality words in which one of the letters occurs exactly
twice.

The paper is organized as follows. After Preliminaries, in Section 3, we give
a concise exposition of an important result about bi-infinite words, needed for
our results. Section 4 contains more specific auxiliary lemmas. Our main partial
classification theorem is stated and proved in Section 5. Using that theorem, we
are able to complete the classification of all binary equality words with two b’s in
Section 6.

2. Preliminaries

We use standard notation of combinatorics on words. Throughout the paper,
Σ will denote the binary alphabet {a, b}. Every nonempty word u has its (uniquely
determined) primitive root, denoted by pu, i.e. the shortest word v such that u = vi

for some i ∈ N. A word that is equal to its primitive root is called primitive. It
is well known that two nonempty words u and v commute if and only if pu = pv.
We denote by |u| the length of u, i.e. its number of letters, and by |u|a the number
of letters a contained in u. Words u, v are conjugate if there exist words w1 and
w2 such that u = w1w2 and v = w2w1. We denote by u ≤p v or u ≤s v the fact
that u is a prefix of v or a suffix of v, respectively. The maximal common prefix
and suffix of u and v are denoted by u ∧ v and u ∧s v, respectively. The symbol
uω denotes the (one-way) infinite word obtained by an infinite concatenation of
copies of u.

We say that a morphism g is periodic if there exists a word u such that g(v) ∈ u∗

for each v on which g is defined. Let g, h be two morphisms. A nonempty word
v such that g(v) = h(v) is called an equality word of g and h. We say that
v is a binary equality word if there exist two distinct nonperiodic morphisms g
and h defined on Σ∗ such that v is an equality word of g and h. The set of all
equality words of g and h is called their equality set and we denote it by Eq(g, h).
A word v ∈ A∗ is periodicity forcing if the equality g(v) = h(v) is satisfied only
if both g and h are periodic or g = h. Note the asymmetry between definitions
of periodicity forcing words and binary equality words which leaves aside words
that would force just one morphism to be periodic. In the binary case, however,
if g(w) = h(w), and just one of the morphisms is periodic, then w = aibaj (see
Lemma 7 or [12]), which also allows both morphisms to be nonperiodic. Therefore,
any binary word is either periodicity forcing or binary equality word.
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It is well known that if two words satisfy a nontrivial relation, then they com-
mute. This fact actually holds also for the free group F (Σ) as follows.

Lemma 1. Let x, y ⊂ F (Σ). If x and y are not free generators of the subgroup
G = 〈x, y〉 of F (Σ), then x and y commute.

For the proof, cf. for example [2, Chapter III, Theorem 9].
Another important lemma is the following one. Its proof can be found in [20,

Chapter 6, Theorem 6.1].

Lemma 2 (Periodicity lemma). Let u and v be primitive words. If the words
uω and vω have a common factor of length at least |u|+ |v| − 1, then u and v are
conjugate.

Remark. Note that if u and v from the Periodicity lemma are prefix or suffix
comparable, then they are equal.

The following two lemmas describe well-known facts about primitive words (see
e.g. [16, Chapter 12, Proposition 12.1.3]):

Lemma 3. Let w ∈ Σ∗ be a word. If wi = uwv for some i ∈ N and some words
u, v ∈ Σ∗, then u = pjw and v = pkw for some j, k ∈ N0 such that pj+k

w = wi−1.

Lemma 4. Let w ∈ Σ∗ be a primitive word. If wi = uwv for some i ∈ N and
some words u, v ∈ Σ∗, then u = wj and v = wk for some j, k ∈ N0 such that
j + k = i− 1.

We also use two lemmas about the bound on the length of the maximal common
prefix (or suffix) of two different words from a binary code (cf. [20, Chapter 6,
Lemma 3.1]):

Lemma 5. Let X = {x, y} ⊆ Σ∗ and let α ∈ xX∗, β ∈ yX∗ be words such that
α ∧ β ≥ |x|+ |y|. Then x and y commute.

Lemma 6. Let X = {x, y} ⊆ Σ∗ and let α ∈ X∗x, β ∈ X∗y be words such that
α ∧s β ≥ |x|+ |y|. Then x and y commute.

Let X = {x, y}, where x, y ∈ Σ∗ and x and y do not commute. We say that
a word u ∈ X∗ is X-primitive, if u = vi implies u = v for all v ∈ X∗. The
following lemma can be found in [9] as Lemma 9.

Lemma 7. Suppose that x, y ∈ Σ∗ do not commute and let X = {x, y}. If there
is an X-primitive word α ∈ X∗ and a word z ∈ Σ∗ such that α = zi with i ≥ 2,
then α = xkyx l or α = ykxy l for some k, l ≥ 0.

It should be said that the previous result was first proved by J.-C. Spehner
in [21], and consecutively by E. Barbin-Le Rest and M. Le Rest in [1]. Note that
the famous result of Lyndon and Schützenberger (see [17]) is a consequence of the
previous lemma.

And finally, we need to formulate two well-known facts about conjugate words.
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Lemma 8. Let u and v be conjugate words. Then also pu and pv are conjugate.
In particular, if u is primitive, then v is primitive as well.

Lemma 9. Let x 6= ε 6= y and z be words satisfying zx = yz. Then there exist
words s, t such that s 6= ε, z = (ts)jt for some j ≥ 0, st is the primitive root of x
and ts is the primitive root of y.

Note that the previous lemma implies that the words x and y are conjugate.
We say that they are conjugate by z. In this situation, we may assume that z is
shorter than x and y or, more precisely, there exists z′ shorter than x such that
z′x = yz′.

3. Bi-infinite words

In the following section, we shall deal with bi-infinite words. The purpose is
to use Theorem 3.11 from [18] to prove a useful lemma about conjugate words.
This lemma plays a crucial role in the proof of our main theorem. The results
of this section, Theorem 10 and Lemma 11, are nice general statements from
combinatorics on words, which are probably not as well known as they would
deserve. Therefore, we include them with a short introduction, where we establish
proper notation and address some of the intricacies of bi-infinite words.

While the concept of bi-infinite words may seem natural, there arise certain
problems and ambiguities when we try to formalize it. Intuitively, a bi-infinite
word w over the alphabet Σ is an infinite sequence (in both directions) of letters
from Σ. We usually write w = . . . w−1w0w1 . . . , where wi ∈ Σ. Note that this bi-
infinite sequence represents a mapping w : Z → Σ. The words w and w′ defined
as w′(i) = w(i + k) for some k ∈ Z are formally different, although they are
isomorphic as ordered sequences (of type Z). J. Maňuch calls w and w′ two
representations of the same word. We respect the fact that they are formally
different and call them equivalent instead, and write w ∼ w′.

Similar problems occur when one tries to define a factorization of a bi-infinite
word. A factorization F is an order preserving (injective) mapping F : Z → Z

satisfying F (0) ≤ 0 and F (1) ≥ 1. Note that a factorization is defined by its
range, in particular, unlike for words, we do not need any notion of equivalent
factorizations. Therefore, we can also see factorizations as subsets of Z that have
no lower nor upper bounds. A factorization applied to a bi-infinite word w is
a mapping Fw : Z → Σ+ where the words Fw(i) are defined as follows:

...

Fw(−1) = wF (−1)wF (−1)+1 . . . wF (0)−1;

Fw(0) = wF (0)wF (0)+1 . . . wF (1)−1;

Fw(1) = wF (1)wF (1)+1 . . . wF (2)−1;

...
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The set of all factors of w as factorized by F , i.e. the range of Fw is denoted
by Fw(Z). Let X = {α, β} be a binary set where α, β ∈ Σ+ (this implies
α 6= β). A factorization F of a bi-infinite word w over Σ is an X-factorization if
Fw(Z) ⊆ X .

Conversely, when we have a bi-infinite sequence of words S : Z → Σ+ we can
define its concatenation

∏

S as a bi-infinite word w such that
...

w(−1) = S(−1)|S(−1)|;

w(0) = S(0)1;

w(1) = S(0)2;

...

w(|S(0)| − 1) = S(0)|S(0)|;

w(|S(0)|) = S(1)1;

...

Note that for a bi-infinite word w, the word w′ =
∏

Fw may be different from w.
However, these two words are equivalent. Let (α0, α1, . . . , αn−1) be a finite se-
quence of words. We denote by (α0, α1, . . . , αn−1)

Z the bi-infinite sequence of
words S such that S(i) = α(i mod n) for every i ∈ Z. For a single word, we use

simply αZ instead of (α)Z. We also define the equivalence of bi-infinite sequences
of words analogously to the equivalence of be-infinite words.

We are now prepared to reformulate Theorem 3.11 from [18] (see also [15,
Theorem 2]).

Theorem 10. Consider a binary set X = {α, β} with α, β ∈ Σ+. Let w be a bi-
infinite word over Σ and let F1 and F2 be two different X-factorizations such that
Fw
1 (Z) ∪ Fw

2 (Z) = X . Then at least one of the following conditions is satisfied:

(i) α and β commute; or
(ii) the primitive roots of α and β are conjugate, w ∼

∏

αZ ∼
∏

βZ, and
Fw
1 = αZ and Fw

2 = βZ, or vice versa; or
(iii) there exists an imprimitive word y = y0 . . . yn−1 ∈ X+ such that w ∼

∏

yZ and Fw
1 ∼ Fw

2 ∼ (y0, . . . , yn−1)
Z.

Remark. J. Maňuch calls a word w for which there exist factorizations F1, F2 as
in Theorem 10 proper X-ambiguous.

The following lemma is a direct consequence of the previous theorem.

Lemma 11. Let A = {a, b}, and u, v ∈ A∗ such that at least one of u, v contains
both a and b. Let g : A∗ → Σ∗ be a morphism such that g(a) = s, g(b) = t and
the words g(u) and g(v) are conjugate. Then u and v are conjugate or s and t
commute.
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Proof: In the following proof, we shall assume that u and v are not conjugate
and we shall show that then s and t commute. If s = t or one of them is empty,
they commute trivially. Thus, suppose ε 6= s 6= t 6= ε. Note that even the
primitive roots of u and v are not conjugate; that would mean either that u and v
are conjugate or that g(u) and g(v) have different lengths. Since g(u) and g(v) are
conjugate, we get

∏

(g(u))Z ∼
∏

(g(v))Z. The bi-infinite word w =
∏

(g(u))Z has
two natural {s, t}-factorizations F1, F2 such that Fw

1 ∼ (g(u1), . . . , g(u|u|))
Z and

Fw
2 ∼ (g(v1), . . . , g(v|v|))

Z. Since pu and pv are not conjugate,
∏

uZ
≁

∏

vZ by
the Periodicity lemma. That implies that factorizations F1 and F2 are different
and Fw

1 ≁ Fw
2 . We also have Fw

1 (Z) ∪ Fw
2 (Z) = {s, t}, because at least one of

the words u and v contains both a and b. Hence, we can use Theorem 10. There,
the only situation that can happen is (i). The second case cannot occur because
Fw
1 (Z) = {s, t} or Fw

2 (Z) = {s, t}. And the last one is precluded by the fact that
Fw
1 ≁ Fw

2 . �

4. Binary equality words with two b’s — part 1

Let g, h : {a, b}∗ → Σ∗ be two distinct nonperiodic morphisms. Consider the
equality set of g and h. As we mentioned in the introduction, Eq(g, h) is generated
by at most two words, and the case with exactly two generators has already been
solved:

Theorem 12 ([12]). Let g and h be nonperiodic binary morphisms, and let
Eq(g, h) be generated by two words. Then Eq(g, h) = {aib, bai}+ for some i ≥ 1
(up to exchange of letters).

The following example comes from [3, Example 7.1].

Example 13. Let

g : a 7→ a h : a 7→ aibai

b 7→ (ba2i)i−1bai(ba2i)i−1b b 7→ (ba2i)i−1b.

Then Eq(g, h) = {aib, bai}+.

Let w ∈ Eq(g, h). We focus on the case when |w|b = 2. In [3], it was pointed
out that all binary words of length at most four are binary equality words. Also,
all binary equality words w with |w|b = 2 and |w|a = 3 were classified as follows:

w ∈ {a3b2, b2a3, a2b2a, ab2a2, ababa, ba3b}.

Note that the above claim also considers words that do not generate the equality
set. For example, abab is a binary equality word but it is not a generator, since it
is a square of ab and two morphisms agree on abab if and only if they agree on ab.

The situation becomes unclear for more a’s. It has been known (see [8]) that
the generator of Eq(g, h) for nonperiodic binary morphisms can be one of the
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following words:

aib2, b2ai, ba2i+1b, ai+1b2ai, aib2ai+1.

The open question was whether there are some other generators with two b’s. We
show that words of the form aibabai are also binary equality words. On the other
hand, we prove that there are no other binary equality words with two b’s that
can generate Eq(g, h) for nonperiodic morphisms.

We need three useful lemmas. They are closely connected to Lemmas 5.3
and 5.4, and Theorem 6.2 in [3]. In particular, it can be observed that they show
that the words (missing in the above list of binary equality words of length five)
abaab, baaba (Lemma 14) and aabab, babaa (Lemma 15) are periodicity forcing.

Lemma 14. Let x, y, u and v be nonempty words such that yx l+1yx = vu l+1vu
or xyx l+1y = uvu l+1v, with l ≥ 1, x 6= u. Then all u, v, x and y commute.

Proof: Consider the equality yx l+1yx = vu l+1vu. The other one is symmetric.
Let ȳ = yx and v̄ = vu. Then ȳx lȳ = v̄u lv̄. We have |ȳ| 6= |v̄| since x 6= u. By

symmetry, suppose |ȳ| < |v̄|.
Let x l = x1u

lx2, where ȳx1 = x2ȳ = v̄. Then, by Lemma 9, there are words s
and t, and integers i > 0 and j ≥ 0 such that st is primitive, s 6= ε, x1 = (st)i,
x2 = (ts)i and ȳ = (ts)jt.

1. If |x| ≥ |st|, then ts is a suffix of x, and therefore also of ȳ. Hence st = ts,
which implies t = ε and x l = siu lsi. If l > 1, then s commutes with u by
Lemma 7. If l = 1, then siusi = x ≤s ȳ = sj , and again s commutes with u by
Lemma 4. Then u, x, v and y commute.

2. If |x| < |st|, then x is a suffix of st, since x is a suffix of ȳ. Therefore x
is a suffix of x1 and since x1 is a prefix of x l, Lemma 3 implies that x1 and x
commute, a contradiction with x 6= ε and |x| < |st|. �

Lemma 15. Let x, y, u and v be nonempty words such that x l+1yxy = u l+1vuv,
where l ≥ 1 and x 6= u. Then all u, v, x and y commute.

Proof: Let ȳ = xy and v̄ = uv. Then x lȳȳ = u lv̄v̄. Suppose by symmetry that
|ȳ| < |v̄|, hence |x| > |u|. If x and u commute, then the claim holds by Lemma 7.
Suppose that they do not commute. Since u l+1 is a prefix of x l+1, the Periodicity
lemma implies that |u l| < |x|. Then zx lyxy = v̄v̄, where z is a suffix of x.

1. If |ȳȳ| ≤ |v̄|, then xyx is a factor of v̄ which is a factor of x+. Therefore, by
Lemma 3, x and ȳ commute. Then all words commute by Lemma 7.

2. Let now |ȳȳ| > |v̄| and let v̄ = zx l−1y1 = y2ȳ, where ȳ = y1y2 = y3y1.
Let s and t be words, and i > 0 and j ≥ 0 integers such that st is primitive,
s 6= ε, y2 = (st)i, y3 = (ts)i and y1 = (ts)jt. From zx l−1y1 = y2ȳ, we obtain
zx l = y2y3x. Moreover, x is a prefix of y3x since xyy2 = y3xy. By applying
Lemma 3 to the word x l+1, we deduce that ts is the primitive root of x. However,
y2y3, and hence also stts, is a factor of x l+1, which implies that s and t commute,
and we are done. �
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α2 α2. . . . . .p p p p p p p

w1 q z q′ w2

Figure 1. Situation in Lemma 17 when |w1| <
∣

∣α2p
l−1

∣

∣ and

|w2| <
∣

∣α2p
l−1

∣

∣.

Lemma 16. Let x, y, u and v be nonempty words such that x lyxyx = u lvuvu,
where l ≥ 2 and x 6= u. Then all u, v, x and y commute.

Proof: Let ȳ = yx and v̄ = vu. Then x lȳȳ = u lv̄v̄. By symmetry, suppose
|ȳ| < |v̄|. Hence there exists w such that v̄ = wȳ. This leads to x lȳ = u lwȳw.
Let z be the suffix of x l satisfying ȳw = zȳ. Then, by Lemma 9, there are words
s and t and integers i > 0 and j ≥ 0 such that st is primitive, s 6= ε, w = (st)i,
z = (ts)i and y = (ts)jt.

1. If |x| ≥ |st|, then ts is a suffix of x, and therefore also of ȳ. Hence st = ts,
which implies t = ε and x l = u ls2i. Since l > 1, Lemma 7 implies that s
commutes with u and x. Therefore all four words u, x, v and y commute.

2. If |x| < |st|, then x is a suffix of st, since x is a suffix of ȳ. Therefore x
is a suffix of w and since x l = u lwz, Lemma 3 implies that z and x commute,
a contradiction with x 6= ε and |x| < |st|. �

5. The equation xiy2xk = uiv2uk

In this section we formulate our crucial theorem, which states that the word
aibbak is periodicity forcing for |i − k| ≥ 2. Firstly however, we need a few more
lemmas. They seem rather technical but have a clear intuitive meaning: they
directly exploit the “synchronization property” of primitive words formulated by
Lemma 4. The first lemma is the most general one, while the next three are
closely connected to it but more specific.

Lemma 17. Let p = α1α2 = β1β2 = γ1γ2, where α2, β2, γ2 6= ε, be a primitive
word, l ≥ 1, and let (α2p

l)2 = w1qzq
′w2, where q = β2β1, q

′ = γ2γ1, z 6= ε and
|z| ≡ |α2| (mod |p|). Then the following holds:

(A) if |w1| <
∣

∣α2p
l−1

∣

∣ and |w2| <
∣

∣α2p
l−1

∣

∣, then z ∈ q∗β2α
−1
1 β1q

∗ and q = q′;

(B) if |w2| ≥
∣

∣α2p
l−1

∣

∣, then z ∈ q∗w where |w| = |α2| and w is a prefix of q;

(C) if |w1| ≥
∣

∣α2p
l−1

∣

∣, then z ∈ w′(q′)∗ where |w′| = |α2| and w′ is a suffix
of q′.

Proof: In the first case, q and q′ are factors of α2p
l and z “lies over the edge”

pα2. The fact that q = q′ follows immediately from the length of z. Since α2p
l =

α−1
1 β1q

lβ2, Lemma 4 implies that z has the required form. If |w2| ≥
∣

∣α2p
l−1

∣

∣,

then qz is a factor of α2p
l, which is a factor of qω. Hence z must have the form

from point (B) by Lemma 4. The last case is symmetric. �
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The following lemma describes the same situation when the whole word qzq′

is a factor of α2p
l.

Lemma 18. Let p = α1α2 = β1β2 = γ1γ2, α2, β2, γ2 6= ε, be a primitive word,
l ≥ 1, and let (α2p

l)2 = uqzq′v, where q = β2β1, q
′ = γ2γ1, z 6= ε and |z| ≡ |α2|

(mod |p|). If either |w1| ≥
∣

∣α2p
l
∣

∣ or |w2| ≥
∣

∣α2p
l
∣

∣, then z ∈ q∗β2γ
−1
2 .

Proof: In this situation, the whole qzq′ is a factor of α2p
l. Therefore, the

conclusions of both (B) and (C) from Lemma 17 hold as we may consider qzq′ to
be inside the first or second α2p

l. Using the notation from (B), we get w = β2γ
−1
2

if |β2| > |γ2| and w = qβ2γ
−1
2 otherwise. In either case, z ∈ q∗β2γ

−1
2 . �

Now we describe the situation when q = q′ = α2α1.

Lemma 19. Let p = α1α2, α2 6= ε, be a primitive word and let q = α2α1. If
qzq is a factor of (α2p

l)2 for l ≥ 1 and for some nonempty word z such that
|z| ≡ |α2| (mod |p|), then z ∈ q∗α2q

∗ or z ∈ α′
2q

∗, where α1α
′
2 = q.

Proof: We can use Lemma 17 for α1 = β1 = γ1 and α2 = β2 = γ2. Case (A)
leads to z ∈ q∗α2q

∗. Case (B) implies z ∈ q∗α2. Thus, the problematic case
is (C), i.e. z ∈ w′q∗. If |w1| ≥

∣

∣α2p
l
∣

∣, then Lemma 4 implies that α2 = p and

Lemma 18 suggests that z ∈ q∗. If
∣

∣α2p
l−1

∣

∣ ≤ |w1| <
∣

∣α2p
l
∣

∣, then w′ = α′
2,

where α1α
′
2 = α2α1, which is what we wanted to prove. This follows from the

facts that the occurrence of z from qzq is within qω, this z is preceded by q and
w1q = α2p

lw′
1, where |w′

1| = |α1|. �

The final lemma deals with the case q = q′ = p.

Lemma 20. Let p = α1α2, α2 6= ε, be a primitive word. If pzp is a factor of
(α2p

l)2 for l ≥ 1 and for some nonempty word z such that |z| ≡ |α2| (mod |p|),
then z ∈ p∗α2p

∗ or z ∈ p∗α′
2, where α′

2α1 = α1α2 = p.

Proof: The proof is analogous and symmetric to the proof of Lemma 19. �

Finally, we present four lemmas about commutation of words under certain
conditions.

Lemma 21. Let x, α1, α2 and u be words such that x = α1α2, u is a prefix of x
and x = α2α2u

i for some i > 0. Then x and u commute.

Proof: Assume that u and x are nonempty (otherwise the claim holds). The
equality α1α2 = α2α2u

i implies that α1 = α2w for some w of length i|u|. Then
α2u

i = wα2. Lemma 9 implies that w = (ts) l, ui = (st) l and α2 = (ts)jt for
some l ≥ 1, j ≥ 0, and some s, t such that s 6= ε and ts is the primitive root
of u. Then either tts or ts is a prefix of α1 depending on whether j = 0 or not.
Since u is a prefix of x = α1α2, we have either st ≤p tts or st = ts. In either case,
s and t commute which means that t is empty, and s is the primitive root of both
u and x. �
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Lemma 22. Let x, α1, α2 and u be words such that x = α1α2, u
i is a prefix of

x, u is a suffix of x and α1α2u
−(i+1)α1 = α2α1α2 for some i > 1. Then x and u

commute.

Proof: Assume that u and x are nonempty (otherwise the claim holds). Since
|α1| =

∣

∣ui+1α2

∣

∣, x = α1α2 and ui is a prefix of x, we have α1 = uiũα̃2, where

|ũ| = |u| and |α̃2| = |α2|. Then uiũα̃2α2u
−1ũα̃2 = α2u

iũα̃2α2. We get that
α̃2 = α2 and uiũα2α2u

−1ũ = α2u
iũα2.

a) If |α2| ≥ |u|, then u is a suffix of α2 which implies ũ = u and ui+1α2 =
α2u

i+1. Since also α1 = ui+1α2, we deduce that x and u commute.
b) Let |α2| < |u|. Since α2u is a prefix of ui, Lemma 5 implies that α2 and

u commute. Then uiũα2α2u
−1ũ = α2u

iũα2 is a nontrivial relation between the
primitive roots of u and ũ, which again implies (by Lemma 1) that u = ũ and we
can continue as in a). �

Lemma 23. Let x, α1, α2 and u be words such that x = α1α2, u
i is a prefix of x,

u is a suffix of x and xu−(i+1)xα1 = α2 for some i > 1. Then x and u commute.

Proof: Assume that u and x are nonempty (otherwise the claim holds). We
have 2|α1| =

∣

∣ui+1
∣

∣ − |x| ≤ |u|. Since α1 is a prefix and also a suffix of x, it is

a border of u and we deduce that x = uiα−2
1 u. Note that α2 = α−1

1 x. Therefore
uiα−2

1 α−2
1 uα1 = α−1

1 uiα−2
1 u. This is a nontrivial relation, therefore α1 and u

commute by Lemma 1. Consequently, u and x commute as well. �

Lemma 24. Let x, α1 and u be words such that ui is a prefix of x, u is a suffix
of x and ui+1 = α1α1x for some i > 1. Then x and u commute.

Proof: Assume that u and x are nonempty (otherwise the claim holds). Since
x = ux′u for some x′, x and u commute by the Periodicity lemma, because the
words uω and (ux′)ω have a common factor of length |u|+ |ux′|. �

The following theorem is one of our main results. It shows that certain words
with two b’s are periodicity forcing.

Theorem 25. Let x, y, u and v be words such that they satisfy xiy2xk = uiv2uk

for some i, k ∈ N and x 6= u. If |i − k| ≥ 2, then all the words x, y, u and v
commute.

It is important to note that this theorem, as well as other above results about
symmetric equations, are straightforwardly related to periodicity forcing words.
Indeed, Theorem 25 implies that the word aibbak with |i − k| ≥ 2 is periodicity
forcing; it is enough to set g(a) = x, g(b) = y, h(a) = u and h(b) = v.

Remark. Note that the condition i, k ≥ 1 is necessary. For example, the equation
x2y2 = u2v2 has a solution x = aab, y = a, u = a and v = baa. The condition
|i − k| ≥ 2 is necessary as well. If i = k + 1, we have the following solution
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(see [9]):

x = a2k+1(bak)2, u = a,

y = bak, v = (akb)2(a3k+1bakb)k.

Proof: If one of the words x, y, u and v is empty, the theorem holds by Lemma 7.
For example, if v = ε, we get xiy2xk = ui+k. Since, i+ k ≥ 2, x and y commute
by Lemma 7. Then also u commutes with x and y and all these words commute
with the empty word v. Thus we may assume that x, y, u and v are nonempty.
Without loss of generality, we also assume that |x| ≥ |u| and i > k+1. It is enough
to prove that x and u commute. Then, px = pu and we obtain pinx y2pknx = v2 for
some n ≥ 1. Hence we are done by Lemma 7. If (i + k − 1)|u| ≥ |px|, p

ω
x and

uω have a common factor of length at least |px| + |u|, x and u commute by the
Periodicity lemma. We therefore suppose

(i + k − 1)|u| < |px|,

which implies

i− k

2
|u| <

|px|

2
.

The equality is equivalent to yxku−(k+i)xiy = v′v′, where v′ is a conjugate
of v. Let α be the prefix of xi of length

i− k

2
|x|+

i+ k

2
|u|.

Then

yxku−(k+i)α = α−1xiy,

that is, xku−(k+i)α is conjugate (by y) with α−1xi. We can assume, without
loss of generality, that y is shorter than the two words. Let px = α1α2, where
|α1| < |px| and α = pcxα1 for some c ≥ 0. Let y′ be such that

xku−(k+i)α = y′y, α−1xi = yy′.

Note that yy′ = α2p
l
x for some l ≥ 0. Also note that the words yy′ and y′y have

the same length, i.e.
∣

∣α2p
l
x

∣

∣ = |pc1x |+ |α1| − (i+ k)|u| for some c1. From that, we
obtain

|α1| − (i+ k)|u| ≡ |α2| (mod |px|).

Finally, note that if α1 and α2 commute, then α1 commutes with px, i.e. it is
an empty word. Then both α and α−1xi are powers of px, which implies that
xku−(k+i)α is a power of a conjugate of px. Bearing in mind that α is a power
of px, we deduce that uk+i = px, i.e. x and u commute. The fact that x and u
commute if α1 and α2 commute will be often used in the proof.
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1. Case i− k ≥ 3 and k ≥ 2. In this case, since y′y and yy′ are conjugate, we
get that xxu−(k+i)α is a factor of (yy′)2 = (α2p

l
x)

2. We also have
∣

∣u−iα
∣

∣ > |px|
because

∣

∣u−iα
∣

∣ =
i− k

2
(|x| − |u|).

Let us put q′ = α2α1, α
′ = α(q′)−1 and z = xu−(k+i)α′. Then pxzq

′ is a factor of
(α2p

l
x)

2 and |z| ≡ |α2| (mod |px|). Hence, we can use Lemma 17, where β1 = ε,
β2 = px, γ1 = α1 and γ2 = α2.

1. I) If Case (A) applies, we get q′ = px, i.e. α1 = ε and we are done.
1. II) In Case (B), z ∈ p∗xw, where w is a prefix of px of length |α2|. Then

there are two possibilities.
1. II. A) Firstly, we may have |w2| ≥

∣

∣α2p
l
x

∣

∣. Lemma 18 implies that w =

pxα
−1
2 = α1. Thus, we obtain z ∈ p∗xα1. That means xu−(k+i)pc−1

x = pmx for
some m. Therefore, x and u commute by Lemma 1.

1. II. B) Another option is that |w2| <
∣

∣α2p
l
x

∣

∣. Then z ∈ p∗xw, where |w| = |α2|
and wq′ = pxα2. Thus α2α1 ≤s α1α2α2 and α1 and α2 commute by Lemma 6.

1. III) In Case (C), there are also two possible subcases.
1. III. A) The first of them, when |w1| ≥

∣

∣α2p
l
x

∣

∣, is the same as 1. II. A).

1. III. B) The last possibility is when |w1| <
∣

∣α2p
l
x

∣

∣. Then pxw
′ is a suffix

of pxq
′. That leads to pxw

′ = α2α2α1 and α1α2 ≤p α2α2α1. Hence α1 and α2

commute by Lemma 5.
2. Case i − k is even. We can write i − k = 2n for some n ≥ 1. Then

α = xnuk+n, y′y = xku−(2k+2n)xnuk+n and yy′ = u−(k+n)xk+n. Since we assume
|x| > (i + k − 1) |u| = (2k + 2n − 1) |u|, we can write x = uk+2nx1u

k−1 =
uk+2n−1x2u

k. The words x1 and x2 are nonempty and satisfy ux1 = x2u; in
other words they are conjugate by u. Thus, by Lemma 9, there are words s and
t such that

(1) x1 = (st)m1 , x2 = (ts)m1 , and u = (ts)m2t

for some m1 ≥ 1,m2 ≥ 0. We have

y′y = (uk+2n−1x2u
k)k−1uk+2n−1x2x1u

k−1(uk+2nx1u
k−1)n−1uk+n,

yy′ = unx1u
k−1(uk+2nx1u

k−1)k+n−1.

In these equalities, we can replace u, x1, x2 by the expressions from (1) accordingly.
Note that (using the notation from Lemma 11) there are words w1 and w2 over
the alphabet A such that g(w1) = y′y and g(w2) = yy′. Moreover, w1 contains
aa as a cyclic factor, whereas w2 does not. Hence, Lemma 11 implies that s and
t commute, which means x and u commute as well.

3. Case k = 1, i− k is odd and i ≥ 6. In this case, we have

∣

∣u−iα
∣

∣ =
i− k

2
(|x| − |u|) > 2|px|.
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Denote by z the word xu−(i+1)αq−2 where q = α2α1. If we put β = u−iαq−2, we
can write z = xu−1β, where β = β′qr for some β′ such that |β′| < |q| and some
r ≥ 0. Note that either a) β′ = u−iα1 or b) β′ = u−ipxα1 = u−iα1q depending
on whether α1 is longer than ui or not. The word qzq is a factor of (α2p

l
x)

2. Since
|α1| − (i + k)|u| ≡ |α2| (mod |px|), we deduce |z| ≡ |α2| (mod |px|). We can use
Lemma 19 which leads to two main options: either z ∈ q∗α2q

∗ or z ∈ α′
2q

∗, where
α1α

′
2 = q .

3. I) Let first

xu−(i+1)αq−2 ∈ q∗α2q
∗,

i.e. xu−1β′qr = qmα2q
n for some m,n ≥ 0. If x is not primitive, we get either

α1α2 = α2α1 if m > 0, or α1α2 ≤p α2α2α1 for m = 0. In both of these cases,
α1 and α2 commute. Therefore, we assume that x is primitive. If r > n we
immediately get that α1 and α2 commute. Hence, we can write

xu−1β′ = qmα2q
n−r,

where 0 ≤ m+ n− r ≤ 1 follows from a simple length argument.
3. I. A) Let xu−1β′ = α2. There are two subcases.
3. I. A. a) Let first xu−(i+1)α1 = α2. This case cannot happen: we would have

2|α1| =
∣

∣ui+1
∣

∣, i.e. |α1| <
∣

∣ui
∣

∣ — a contradiction.

3. I. A. b) Let xu−(i+1)xα1 = α2. Then x and u commute by Lemma 23.
3. I. B) Let xu−1β′ = qα2 = α2x.
3. I. B. a) In the first case, we have xu−(i+1)α1 = α2x which is equal to

α1α2u
−(i+1)α1 = α2α1α2. Thus x and u commute by Lemma 22.

3. I. B. b) Let xu−(i+1)xα1 = α2x. That means 2|α1| = |ui+1|. This implies
(i + 1 is odd) that u = u1u2 with |u1| = |u2| and α1 = udu1, d = i/2. Since α1

is a suffix of x, and also u is a suffix of x, we deduce u1 = u2 and α1 = ui+1
1 .

Then ui+1
1 α2u

−2(i+1)
1 ui+1

1 α2u
i+1
1 = α2u

i+1
1 α2 is a nontrivial relation showing that

u1 and α2 commute. It follows that u and x commute as well.
3. I. C) Let xu−1β′ = α2q.
3. I. C. a) The case xu−(i+1)α1 = α2q leads to α1α2 = α2α2u

i+1. Hence, x and
u commute by Lemma 21.

3. I. C. b) In the case xu−(i+1)xα1 = α2q, we get xu−(i+1)x = α2α2. We also
have 2|α1| = |ui+1|. Now we can proceed similarly to case 3. I. B. b). Once again,
we obtain u = u1u2 with |u1| = |u2| and α1 = udu1, d = i/2. Hence u2 ≤p α2.

The equality xu−(i+1)x = α2α2 implies that u1 ≤p α2. Thus u1 = u2 and

α1 = ui+1
1 . Then ui+1

1 α2u
−2(i+1)
1 ui+1

1 α2 = α2α2 is a nontrivial relation showing
that u1 and α2 commute. It follows that u and x commute as well.

3. II) Let now

xu−(i+1)αq−2 ∈ α′
2q

∗,

i.e. xu−1β′qr = α′
2q

m for some m ≥ 0, where α1α
′
2 = α2α1. Then α1xu

−1β′qr =
α1α

′
2q

m = α2α1q
m. If x is not primitive, we obtain α2α1 ≤p α1α1α2 and α1 and
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α2 commute by Lemma 5. Hence, assume that x is primitive. By simple length
arguments, we can show 0 ≤ m− r ≤ 1.

3. II. A) Let xu−1β′ = α′
2.

3. II. A. a) The case xu−(i+1)α1 = α′
2 cannot occur; the reasoning is the same

as in case 3. I. A. a).
3. II. A. b) In the case xu−(i+1)α1q = α′

2, we get xu−(i+1)α1α1 = ε, that is
ui+1 = α1α1x. Hence x and u commute by Lemma 24.

3. II. B) Let xu−1β′ = α′
2q.

3. II. B. a) The case xu−(i+1)α1 = α′
2q implies xu−(i+1) = α′

2α2, i.e. α1α2 =
α′
2α2u

i+1. Then α1α1α2 = α1α
′
2α2u

i+1 = α2α1α2u
i+1. Since α2α1 ≤p α1α1α2,

α1 and α2 commute by Lemma 5.
3. II. B. b) In the case xu−(i+1)α1q = α′

2q, we have α1xu
−(i+1)α1 = α1α

′
2 =

α2α1. That leads to α1α1α2 = α2u
i+1. Since α1 ≤p ui, we get α2α1 ≤p α1α1α2

and α1 and α2 commute by Lemma 5.
4. Case i = 4 and k = 1. Here we have |α| = 3

2 |x|+
5
2 |u| and |yy′| = 5

2 (|x|−|u|).
4. I) If x is not primitive, we get |α| > 3|px| and |yy′| > 3|px|. Denote by z the

word α1xu
−(i+1)px. Then |y′y| − |pxzpx| = |α| − |pxpxpxα1| ≥ 0, which means

that the word (yy′)2 = (α2p
l
x)

2 contains pxzpx. We already know that l ≥ 1
and |α1| − (i + k)|u| ≡ |α2| (mod |px|). Therefore, z satisfies the conditions of
Lemma 20.

4. I. A) Let first

α1xu
−(i+1)px ∈ p∗xα2p

∗
x.

Here we get that α1α1α2 is a prefix of (α1α2)
∗α2(α1α2)

∗, because x is not prim-
itive. If α1α1α2 is a prefix of α1α2α1, then α1 and α2 obviously commute. If
α1α1α2 is a prefix of α1α2α2α1, then α1 and α2 commute by Lemma 5. And fi-
nally, if α1α1α2 is a prefix of α2(α1α2)

ω , then also α1α1α1α2 is a prefix of (α1α2)
ω

and α1 and α2 commute by Lemma 5.
4. I. B) Let now

α1xu
−(i+1)px ∈ p∗xα

′
2.

In this situation, a simple length argument yields α1p
m
x u−(i+1)px = pnxα

′
2 for some

m > 1 and n > 0. Since px = α1α2 = α′
2α1, we get α1α

′
2 = α′

2α1, i.e. α1 and α′
2

commute. Then α2 = α′
2 and α1 and α2 commute as well.

4. II) Assume that x is primitive. Then, there are three possibilities.
4. II. A) Let

∣

∣u5
∣

∣ = |x|. This means x = u5 and x and u commute.

4. II. B) Let
∣

∣u5
∣

∣ > |x|. This leads to α = xxα1, yy′ = α2x = α2α1α2

and y′y = xu−5xxα1. We also have |α1| < |u|
2 and, since |x| > 4|u|, we get

|α2| > 7 |u|
2 . Thus, we can write y′y = α1(α2u

−1)(u−4x)α1α2α1. We get that
α1α2α1 is a factor of (α2α1α2)

ω . Then, Lemmas 3 and 4 allow only these three
options:

4. II. B. a) Let α1(α2u
−1)(u−4x)α1 = α2. Therefore, x and u commute by

Lemma 23.
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4. II. B. b) Let α1α1(α2u
−1)(u−4x) = α2. We get u5 = α1α1x and x and u

commute by Lemma 24.
4. II. B. c) And finally, let α1α1(α2u

−1)(u−4x)α1 = pmα2
α1p

n
α2
, where m,n ≥ 1

and pm+n
α2

= α2. In this case, we implicitly suppose that α2 is not primitive. Then

either α2
1pα2

≤p pmα2
α1 or pmα2

α1 ≤p α2
1pα2

. In either case, α1 and α2 commute by
Lemma 5.

4. II. C) Let
∣

∣u5
∣

∣ < |x|. We get α = xα1, yy
′ = α2xx and y′y = xu−5xα1. Here

we have |α1| = |α2| +
∣

∣u5
∣

∣. Since |α1| > 5|u|, we can write y′y = (α1α2u
−1) ×

(u−4α1)α2α1, i.e. α2α1 is a factor of y′y. Since y′y and yy′ are conjugate, this
α2α1 must occur somewhere within (α2α1α2α1α2)

2. Lemma 4 allows these three
options:

4. II. C. a) Let α1α2u
−5α1 = α2α1α2. Therefore, x and u commute by Lem-

ma 22.
4. II. C. b) Let α1α2u

−5α1 = α2α2α1. This case leads to α1α2 = α2α2u
5, and

x and u commute by Lemma 21.
4. II. C. c) Let α2α1 be “over the edge” α2α2. Formally, this situation cor-

responds to (α2α1α2α1α2)
2 = w1α1α2u

−5α1α2α1w2 where w1 6= ε and |w2| >
|α2α1α2|. Since u

4 is a prefix of α1, we may write α1 = u4α1. Then we can divide
this situation into four subcases.

4. II. C. c. i) Let |w2| ≤ |α2α2α1α2|. In this case, α2 is “over the edge”
or the edge is between α2 and α1. Hence, this α2 must occur within α2α2.
Lemma 3 implies that α1α1α2u

−5α1 = pmα2
α1α2α1p

n
α2

for some m and n such

that pm+n
α2

= α2 and m > 0. Since |α2α1| <
∣

∣α1α1α2u
−1

∣

∣, we get pmα2
α1 ≤p α1α1

and α1 and α2 commute by Lemma 5.
4. II. C. c. ii) Let |α2α2α1α2| < |w2| <

∣

∣α2u
4α2α1α2

∣

∣. Since pu is a suffix of

α1α2, Lemma 3 implies that α2α1α2α1α2 = pmu α1α1α2u
−1α1α2p

n
u for some m

and n such that pm+n
u = u4 and n > 0. The word pnuα1α2 is a suffix of the left-

hand side of the equation while α1α2p
n
u is a suffix of the right-hand side. Hence,

pu commutes with α1α2 and thus also with px = pm+n
u α1α2.

4. II. C. c. iii) Let |w2| ≥
∣

∣α2u
4α2α1α2

∣

∣. In this case, the primitive word

α1α2u
4 from y′y (see Lemma 8) must occur in α2α1α2α1α2, which in turn is

a factor of (α1α2u
4)ω. Lemma 4 forces the equality α1u

4α1α2u
−1 = α1α2α2u

4,
i.e. α1α2 = α2α2u

5. Therefore, x and u commute by Lemma 21. �

6. Binary equality words with two b’s — part 2

Let us now explain how our results can be used to deal with binary equality
words with two b’s. The following lemma is an elementary case of a general theory
developed in [4] and [5].
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Lemma 26. Suppose that w is not a binary equality word. Let f be a binary
morphism

f : a 7→ a

b 7→ aibaj,

with i, j ≥ 0. Then f(w) is not a binary equality word.

Proof: Suppose that g ◦ f(w) = h ◦ f(w) for binary morphisms g and h. Since
w is not a binary equality word, we have that either g ◦ f = h ◦ f , or both g ◦ f
and h ◦ f are periodic.

If g ◦ f = h ◦ f , then g(a) = h(a), and g(aibaj) = h(aibaj). Therefore g = h.
Let both g ◦ f and h ◦ f be periodic. Then g(a), g(aibaj) ∈ t∗ for some t.

Therefore also g is periodic. Similarly, h is periodic.
This completes the proof. �

Note that the previous proof has in fact verified the two conditions of [4,
Theorem 6].

Example 27. Take the word w′ = ababaaaa and suppose that there exist two
distinct nonperiodic morphisms g, h : {a, b}∗ → Σ∗ such that g(w′) = h(w′). Now
we can take the word w = abbaaa and a morphism f : {a, b}∗ → {a, b}∗ defined
by

f : a 7→ a

b 7→ ba.

It is easy to see that f(w) = w′ and g ◦ f(w) = h ◦ f(w). Since the word w is not
a binary equality word by Theorem 25, neither w′ is.

If w is an equality word, then J.D. Day at al., see [4, Theorem 6], do not tell
us anything about f(w). However, sometimes the solution of w yields a solution
of f(w). We give a nontrivial example.

Example 28. Consider the word ababa. We can take w = bba and f(b) = ab.
Take the most simple solution for bba, namely

g′ : a 7→ a h′ : a 7→ cca

b 7→ cc b 7→ c.

This solution is not helpful because g′(a) is not a prefix of g′(b), nor h′(a) a prefix
of h′(b). However, considering instead θ◦g′′ and θ◦h′′, where θ(a) = a, θ(c) = ab,
and

g′′ : a 7→ a h′′ : a 7→ cca

b 7→ c4 b 7→ c3,

we get
g′′′ : a 7→ a h′′′ : a 7→ (ab)2a

b 7→ (ab)4 b 7→ (ab)3.
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Now g′′′(a) ≤p g′′′(b) and h′′′(a) ≤p h′′′(b) and we obtain a solution

g : a 7→ a h : a 7→ (ab)2a

b 7→ b(ab)3 b 7→ b

for the word ababa.

We have just seen that albabal is a binary equality word for l = 1. The following
lemma shows that it is true for greater l’s as well.

Lemma 29. The word albabal, where l ≥ 2, is an equality word of two nonperi-
odic morphisms.

Proof: Take the morphisms

g : a 7→ a2l−1ba2l−1ba2l−1

b 7→ ba2l−1(g(a))l−2a2l−1b

h : a 7→ a

b 7→ al−1ba2l−1g(b)a2l−1ba2l−1g(b)a2l−1bal−1.

It is straightforward to verify that g(albabal) = h(albabal) and both g and h are
obviously nonperiodic. �

The morphisms in the proof of the previous lemma can be derived from the
solutions of the equation x l−1y2x l = ul−1v2ul. We can take the following solution
(see pages 52–53 in [8])

x = (al−1b)2a2l−1, u = a,

y = al−1bx l−1al−1b, v = bal−1ba2l−1x l−2al−1bx l−1(al−1b)2al−1,

and apply the morphism
f : a 7→ a

b 7→ alb.

Then we obtain g(a) = f(x), g(b) = (g(a))−1f(y), h(a) = f(u) and h(b) =
(h(a))−1f(v).

We can now present a result that yields a complete classification of binary
equality words with two b’s.

Theorem 30. Let g, h : {a, b}∗ → Σ∗ be two different nonperiodic morphisms.
Let w ∈ Σ∗ and |w|b = 2. Then w is a binary equality word if and only if w is
one of the following words:

anb2, b2an, banb, an+1b2an, anb2an+1, anbaban, anbban, anban+mbam,

where m,n ≥ 0.
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Proof: We first list morphisms witnessing that all listed words are binary equal-
ity words.

For
g : a 7→ am h : a 7→ (amnb)m

b 7→ (bamn)n b 7→ an

we have anbm ∈ Eq(g, h) (see [3, Example 5.1]).
For n = 2 l + 1 and

g : a 7→ a h : a 7→ ba2 l+1b

b 7→ b(ba2 l+1b) lb b 7→ b

we have banb ∈ Eq(g, h) (cf. [3, Theorem 6.2]).
For

g : a 7→ a2n+1(ban)2 h : a 7→ a

b 7→ ban b 7→ (anb)2(a3n+1banb)n

we have an+1ban ∈ Eq(g, h) (see Conclusion in [9]).
For anbaban, see Lemma 29.
Example 13 yields morphisms with Eq(g, h) = {anb, ban}+. Therefore also

anbban, ba2nb ∈ Eq(g, h).
For

g : a 7→ a2 h : a 7→ a

b 7→ b b 7→ anbam

we have anbam ∈ Eq(g, h). Then also anban+mbam ∈ Eq(g, h).
The remaining words are mirror images of words already covered.
We now show that no other binary equality words with two b’s exist. Let

w = aibajbak. If i = k = 0, then w is one of the allowed words. By symmetry,
we can further assume i ≥ k and i > 0.

I. Let j ≥ i + k + 1. Then abaj−(i+k)+1b is periodicity forcing by Lemma 14.
Lemma 26 implies that w is periodicity forcing using the morphism f(b) =
ai−1bak.

II. If j = i+ k, then w is one of the allowed words.
III. Let j < i+ k.
a) Let k < j. Then ai+k−j+1bab is periodicity forcing by Lemma 15. Then also

w is periodicity forcing by Lemma 26 using f(b) = aj−k−1bak.
b) Let k = j. Then w is a binary equality word for j = k = 0 or for i = j =

k = 1. Otherwise, i ≥ 2 and k ≥ 1. Then aibaba is periodicity forcing by
Lemma 16, and also w is periodicity forcing by Lemma 26 using f(b) = bak−1.

c) Let k > j. The word w is a binary equality word if i = k and j ≤ 1, or
i = k + 1 and j = 0. Otherwise, aibbak−j is periodicity forcing by Theorem 25.
Then also w is periodicity forcing by Lemma 26 with f(b) = baj . �
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7. Conclusion

In this paper, we have covered an important part of unsolved cases in the
classification of binary equality words. The difficulty of the proof, namely of
Theorem 25, may be surprising. It is interesting to stress, that while the dual
PCP is decidable even in the general case, there is no efficient decision procedure
even in the binary case. This reflects a complicated question of algorithmic solving
of general word equations, of which our equations are a special case (symmetric
equations in four unknowns).
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