[1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.:
Harmonicity of unit vector fields with respect to Riemannian g-natural metrics. Differential Geom. Appl. 27 (2009), 157–169.
DOI 10.1016/j.difgeo.2008.06.016 |
MR 2488999
[2] Abbassi, M.T.K., Calvaruso, G., Perrone, D.:
Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. Quart. J. Math. 62 (2011), 259–288.
DOI 10.1093/qmath/hap040 |
MR 2805204
[3] Abbassi, M.T.K., Sarih, M.:
On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 (2005), 19–47.
MR 2106375
[5] Baghban, A., Abedi, E.: On the harmonic vector fields. $8$th Seminar on Geometry and Topology, Amirkabir University of Technology, 2015.
[6] Bouzir, H., Beldjilali, G., Belkhelfa, M., Wade, A.:
Generalized kahler manifolds and transformation of generalized contact structures. Arch. Math. (Brno) 53 (2017), 35–48.
DOI 10.5817/AM2017-1-35 |
MR 3636680
[9] Dragomir, S., Perrone, D.:
Harmonic vector fields, Variational Principles and Differential Geometry. Elsevier, 2012.
MR 3286434
[10] Friswell, R.M.: Harmonic vector fields on pseudo-Riemannian manifolds. Ph.D. thesis, 2014.
[14] Urakawa, H.:
Calculus of variations and harmonic maps. American Mathematical Society, 1993.
MR 1252178