Previous |  Up |  Next

Article

Keywords:
monoid; refinement; interpolation; ring; von Neumann regular
Summary:
We develop elementary methods of computing the monoid $\boldsymbol{\mathcal{V}}(\boldsymbol{R})$ for a directly-finite regular ring $\boldsymbol{R}$. We construct a class of directly finite non-cancellative refinement monoids and realize them by regular algebras over an arbitrary field.
References:
[1] Ara, P.: The realization problem for von Neumann regular rings. Ring Theory 2007, Proceedings of the fifth China-Japan-Korean conference (H., Marubayashi, K., Masaike, K., Oshiro, M., Sato, eds.), World Scientific, Hackensack, NJ, 2009, pp. 21–37. MR 2513205
[2] Ara, P.: The regular algebra of a poset. Trans. Amer. Math. Soc. 362 (2010), 1505–1546. DOI 10.1090/S0002-9947-09-04884-3 | MR 2563739
[3] Ara, P., Brustenga, M.: The regular algebra of a quiver. J. Algebra 309 (2007), 207–235. DOI 10.1016/j.jalgebra.2006.10.013 | MR 2301238
[4] Ara, P., Goodearl, K.R.: Tame and wild refinement monoids. Semigroup Forum 91 (2015), 1–27. DOI 10.1007/s00233-014-9647-3 | MR 3369375
[5] Ara, P., Goodearl, K.R.: The realization problem for some wild monoids and the Atiyah problem. Trans. Amer. Math. Soc. 369 (2017), 5665–5710. DOI 10.1090/tran/6889 | MR 3646775
[6] Ara, P., Moreno, M.A., Pardo, E.: Non stable ${K}$-theory of graph algebras. Algebras Represent. Theory 10 (2007), 157–178. MR 2310414
[7] Chuang, Ch.-L., Lee, P.-H.: On regular subdirect product of simple artinian rings. Pacific J. Math. 142 (1990), 17–21. DOI 10.2140/pjm.1990.142.17 | MR 1038726
[8] Goodearl, K.R.: Partially Ordered Abelian Groups with Interpolation. American Mathematical Society, Providence Rhode Island, 1986. MR 0845783
[9] Goodearl, K.R.: Von Neumann Regular Rings. Krieger Pub. Co., 1991. MR 1150975
[10] Goodearl, K.R.: Von Neumann regular rings and direct sum decomposition problems. Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. MR 1378203
[11] Moncasi, J.: A regular ring whose ${K}_0$ is not a Riesz group. Comm. Algebra 13 (1985), 125–131. DOI 10.1080/00927878508823152 | MR 0768090
[12] Wehrung, F.: Non-measurability properties of interpolation vector spaces. Israel J. Math. 103 (1998), 177–206. DOI 10.1007/BF02762273 | MR 1613568
Partner of
EuDML logo