Previous |  Up |  Next

Article

Keywords:
ring of real-valued continuous functions on a frame; coz-disjoint; coz-dense and coz-spatial frames; zero sets in pointfree topology; $z$-ideal; strongly $z$-ideal
Summary:
Let $\mathcal{R}L$ be the ring of real-valued continuous functions on a frame $L$. The aim of this paper is to study the relation between minimality of ideals $I$ of $\mathcal{R}L$ and the set of all zero sets in $L$ determined by elements of $I$. To do this, the concepts of coz-disjointness, coz-spatiality and coz-density are introduced. In the case of a coz-dense frame $L$, it is proved that the $f$-ring $\mathcal{R}L$ is isomorphic to the $f$-ring $ C(\Sigma L)$ of all real continuous functions on the topological space $\Sigma L$. Finally, a one-one correspondence is presented between the set of isolated points of $\Sigma L$ and the set of atoms of $L$.
References:
[1] Aliabad, A.R., Azarpanah, F., Paimann, M.: Relative $z$-ideals and $z^0$-ideals in the factor rings of $C(X)$. Bull. Iran. Math. Soc. 36 (2010), 211–226. MR 2743400
[2] Azarpanah, F., Karamzadeh, O.A.S., Rezai Aliabad, A.: On $z^0$-ideals in $C(X)$. Fund. Math. 160 (1999). MR 1694400
[3] Azarpanah, F., Taherifar, A.: Relative $z$-ideals in $C(X)$. Topology Appl. 156 (2009), 1711–1717. MR 2521707
[4] Banaschewski, B.: The real numbers in pointfree topology. Textos de Mathemática (Séries B), No. 12, Departamento de Mathemática da Universidade de Coimbra, Coimbra (1997). MR 1621835
[5] Banaschewski, B., Mulvey, C.J.: Stone-Čech compactification of locales, I. Houston J. Math. 6 (1980), 301–312. MR 0597771
[6] Dube, T.: Concerning $P$-frames, essential $P$-frames and strongly zero-dimensional frame. Algebra Universalis 69 (2009), 115–138. DOI 10.1007/s00012-009-0006-2 | MR 2551788
[7] Dube, T.: Some algebraic characterizations of F-frames. Algebra Universalis 62 (2009), 273–288. DOI 10.1007/s00012-010-0054-7 | MR 2661380
[8] Dube, T.: On the ideal of functions with compact support in pointfree function rings. Acta Math. Hungar. 129 (2010), 205–226. DOI 10.1007/s10474-010-0024-8 | MR 2737723 | Zbl 1299.06021
[9] Dube, T.: A note on the socle of certain types of f-rings. Bull. Iran. Math. Soc. 2 (2012), 517–528. MR 3005080
[10] Ebrahimi, M.M., Karimi Feizabadi, A.: Pointfree prime representation of real Riesz maps. Algebra Universalis 54 (2005), 291–299. DOI 10.1007/s00012-005-1945-x | MR 2219412
[11] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Strongly fixed ideals in $ C (L)$ and compact frames. Arch. Math. (Brno) 51 (2015), 1–12. DOI 10.5817/AM2015-1-1 | MR 3338762
[12] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Zero set in pointfree topology and strongly $z$-ideals. Bull. Iran. Math. Soc. 41 (2015), 1071–1084. MR 3416615
[13] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Intersection of essential ideals in the ring of real-valued continuous functions on a frame. J. of Algebraic System 5 (2017), no. 2, 149–161. MR 3744620
[14] Gillman, L., Jerison, M.: Rings of continuous functions. Springer-Verlag, 1976. MR 0407579
[15] Gutiérrez García, J., Picado, J., Pultr, A.: Notes on point-free real functions and sublocales. Categorical Methods in Algebra and Topology, Mathematical Texts, no. 46, University of Coimbra, 2014, pp. 167–200. MR 3330905
[16] Karamzadeh, O.A.S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$. Proc. Amer. Math. Soc. 93 (1985), 179–184. MR 0766552 | Zbl 0524.54013
[17] Picado, J., Pultr, A.: Frames and Locales: Topology without points. Frontiers in Mathematics, Springer Basel, 2012. MR 2868166
Partner of
EuDML logo