[1] Adams, R. A.:
Sobolev Spaces. Pure and Applied Mathematics 65, Academic Press, New York (1975).
MR 0450957 |
Zbl 0314.46030
[2] Andrews, K. T., Dumont, Y., M'Bengue, M. F., Purcell, J., Shillor, M.:
Analysis and simulations of a nonlinear dynamic beam. Z. Angew. Math. Phys. 63 (2012), 1005-1019.
DOI 10.1007/s00033-012-0233-9 |
MR 3000712 |
Zbl 1261.35093
[3] Andrews, K. T., Kuttler, K. L., Shillor, M.:
Dynamic Gao beam in contact with a reactive or rigid foundation. W. Han et al. Advances in Variational and Hemivariational Inequalities Advances in Mechanics and Mathematics 33, Springer, Cham (2015), 225-248.
DOI 10.1007/978-3-319-14490-0_9 |
MR 3380538 |
Zbl 1317.74049
[8] Fučík, S., Kufner, A.:
Nonlinear Differential Equations. Studies in Applied Mechanics 2. Elsevier Scientific Publishing Company, Amsterdam (1980).
MR 0558764 |
Zbl 0426.35001
[15] Horák, J. V., Netuka, H.: Mathematical model of pseudointeractive set: 1D body on non-linear subsoil. I. Theoretical aspects. Engineering Mechanics 14 (2007), 311-325.
[16] Lions, J. L.:
Optimal Control of Systems Governed by Partial Differential Equations. Die Grundlehren der mathematischen Wissenschaften 170, Springer, Berlin (1971).
MR 0271512 |
Zbl 0203.09001
[17] Machalová, J., Netuka, H.:
Solving the beam bending problem with an unilateral Winkler foundation. Numerical Analysis and Applied Mathematics ICNAAM 2011 T. E. Simos et al. AIP Conference Proceedings 1389, AIP-Press, Springer (2011), 1820-1824.
DOI 10.1063/1.3636963
[18] Machalová, J., Netuka, H.:
Solution of contact problems for nonlinear Gao beam and obstacle. J. Appl. Math. 2015 (2015), Article ID 420649, 12 pages.
DOI 10.1155/2015/420649 |
MR 3399550
[19] Machalová, J., Netuka, H.:
Solution of contact problems for Gao beam and elastic foundation. (to appear) in Math. Mech. Solids. Special issue on Inequality Problems in Contact Mechanics (2017).
DOI 10.1177/1081286517732382 |
MR 3399550
[20] Neittaanmäki, P., Sprekels, J., Tiba, D.:
Optimization of Elliptic Systems. Theory and Applications. Springer Monographs in Mathematics, Springer, New York (2006).
DOI 10.1007/b138797 |
MR 2183776 |
Zbl 1106.49002
[21] Reddy, J. N.:
An Introduction to the Finite Element Method. McGraw-Hill Book Company, New York (2006).
MR 0033470 |
Zbl 0561.65079
[22] Shillor, M., Sofonea, M., Telega, J. J.:
Models and Analysis of Quasistatic Contact: Variational Methods. Lecture Notes in Physics 655, Springer, Berlin (2004).
DOI 10.1007/b99799 |
Zbl 1069.74001
[24] Sofonea, M., Matei, A.:
Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge (2012).
DOI 10.1017/CBO9781139104166 |
Zbl 1255.49002
[25] Sofonea, M., Tiba, D.:
The control variational method for contact of Euler-Bernoulli beams. Bull. Trans. Univ. Braşov, Ser. III, Math. Inform. Phys. 2 (2009), 127-136.
MR 2642501 |
Zbl 1224.74088
[28] Tröltzsch, F.:
Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Graduate Studies in Mathematics 112, American Mathematical Society, Providence (2010).
DOI 10.1090/gsm/112 |
MR 2583281 |
Zbl 1195.49001