Previous |  Up |  Next

Article

Keywords:
Slater-type orbital; Hydrogen-like orbital; Gaussian-type orbital; electronic structure; tensor numerical methods; sinc approximation
Summary:
The paper focuses on a low-rank tensor structured representation of Slater-type and Hydrogen-like orbital basis functions that can be used in electronic structure calculations. Standard packages use the Gaussian-type basis functions which allow us to analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital functions are physically more appropriate, but they are not analytically integrable. A numerical integration is too expensive when using the standard discretization techniques due the dimensionality of the problem. However, it can be effectively performed using the tensor representation of basis functions. Furthermore, this approach can take advantage of parallel computing.
References:
[1] Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards. A Wiley-Interscience Publication; John Willey, New York (1972). MR 0167642 | Zbl 0543.33001
[2] Chisholm, C. D. H.: Group Theoretical Techniques in Quantum Chemistry. Academic Press, New York (1976).
[3] Fang, G.: Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error. J. Approximation Theory 85 (1996), 115-131. DOI 10.1006/jath.1996.0033 | MR 1385811 | Zbl 0845.94003
[4] Hehre, W. J., Stewart, R. F., Pople, J. A.: Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 51 (1969), 2657-2664. DOI 10.1063/1.1672392
[5] Khoromskaia, V., Khoromskij, B. N.: Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies. Phys. Chem. Chem. Phys. 17 (2015), 31491-31509. DOI 10.1039/C5CP01215E
[6] Khoromskaia, V., Khoromskij, B. N., Schneider, R.: Tensor-structured factorized calculation of two-electron integrals in a general basis. SIAM J. Sci. Comput. 35 (2013), A987--A1010. DOI 10.1137/120884067 | MR 3040965 | Zbl 1266.65069
[7] Khoromskij, B. N.: Structured rank-$(R_1,\dots,R_D)$ decomposition of function-related tensors in $\mathbb R^D$. Comput. Methods Appl. Math. 6 (2006), 194-220. DOI 10.2478/cmam-2006-0010 | MR 2280939 | Zbl 1120.65052
[8] Khoromskij, B. N.: Tensors-structured numerical methods in scientific computing: Survey on recent advances. Chemometrics and Intelligent Laboratory System 110 (2012), 1-19. DOI 10.1016/j.chemolab.2011.09.001
[9] Khoromskij, B. N., Khoromskaia, V.: Low rank Tucker-type tensor approximation to classical potentials. Cent. Eur. J. Math. 5 (2007), 523-550. DOI 10.2478/s11533-007-0018-0 | MR 2322828 | Zbl 1130.65060
[10] Khoromskij, B. N., Khoromskaia, V.: Multigrid accelerated tensor approximation of function related multidimensional arrays. SIAM J. Sci. Comput. 31 (2009), 3002-3026. DOI 10.1137/080730408 | MR 2520309 | Zbl 1197.65215
[11] Lang, S.: Undergraduate Analysis. Undergraduate Texts in Mathematics, Springer, New York (1997). DOI 10.1007/978-1-4757-2698-5 | MR 1476913 | Zbl 0962.46001
[12] Mrovec, M.: Tensor approximation of Slater-type orbital basis functions. Advances in Electrical and Electronic Engineering. (2017). DOI 10.15598/aeee.v15i2.2235
[13] Saad, Y., Chelikowsky, J. R., Shontz, S. M.: Numerical methods for electronic structure calculations of materials. SIAM Rev. 52 (2010), 3-54. DOI 10.1137/060651653 | MR 2639608 | Zbl 1185.82004
[14] Schiff, J. L.: The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer, New York (1999). DOI 10.1007/978-0-387-22757-3 | MR 1716143 | Zbl 0934.44001
[15] Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics 20, Springer, New York (1993). DOI 10.1007/978-1-4612-2706-9 | MR 1226236 | Zbl 0803.65141
[16] Stewart, R. F.: Small Gaussian expansions of atomic orbitals. J. Chem. Phys. 50 (1969), 2485-2495. DOI 10.1063/1.1671406
Partner of
EuDML logo