Previous |  Up |  Next

Article

Keywords:
Eulerian hydrodynamics; finite volume; operator-split method; unsplit method; Roe's method; curvilinear coordinates
Summary:
We calculate self-consistent time-dependent models of astrophysical processes. We have developed two types of our own (magneto) hydrodynamic codes, either the operator-split, finite volume Eulerian code on a staggered grid for smooth hydrodynamic flows, or the finite volume unsplit code based on the Roe's method for explosive events with extremely large discontinuities and highly supersonic outbursts. Both the types of the codes use the second order Navier-Stokes viscosity to realistically model the viscous and dissipative effects. They are transformed to all basic orthogonal curvilinear coordinate systems as well as to a special non-orthogonal geometric system that fits to modeling of astrophysical disks. We describe mathematical background of our codes and their implementation for astrophysical simulations, including choice of initial and boundary conditions. We demonstrate some calculated models and compare the practical usage of numerically different types of codes.
References:
[1] Arnett, D.: Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present. Princeton Series in Astrophysics, Princeton University Press (1996).
[2] Caramana, E. J., Shashkov, M. J., Whalen, P. P.: Formulations of artificial viscosity for multi-dimensional shock wave computations. J. Comput. Phys. 144 (1998), 70-97. DOI 10.1006/jcph.1998.5989 | MR 1633037
[3] Cargo, P., Gallice, G.: Roe matrices for ideal MHD and systematic construction of Roe matrices for systems of conservation laws. J. Comput. Phys. 136 (1997), 446-466. DOI 10.1006/jcph.1997.5773 | MR 1474413 | Zbl 0919.76053
[4] Chevalier, R. A.: Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258 (1982), 790-797. DOI 10.1086/160126
[5] Chevalier, R. A., Soker, N.: Asymmetric envelope expansion of supernova 1987A. Astrophys. J. 341 (1989), 867-882. DOI 10.1086/167545
[6] Chung, T. J.: Computational Fluid Dynamics. Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9780511606205 | MR 1890713 | Zbl 1037.76001
[7] Hirsch, C.: Numerical Computation of Internal and External Flows. Volume 1: Fundamentals of Numerical Discretization. Wiley Series in Numerical Methods in Engineering, Wiley-Interscience Publication, Chichester (1988). Zbl 0662.76001
[8] Hirsch, C.: Numerical Computation of Internal and External Flows. Volume 2: Computational Methods for Inviscid and Viscous Flows. Wiley Series in Numerical Methods in Engineering, John Willey & Sons, Chichester (1990). Zbl 0742.76001
[9] Krtička, J., Kurfürst, P., Krtičková, I.: Magnetorotational instability in decretion disks of critically rotating stars and the outer structure of Be and Be/X-ray disks. Astron. Astrophys. 573 (2015), A20, 7 pages. DOI 10.1051/0004-6361/201424867
[10] Krtička, J., Owocki, S. P., Meynet, G.: Mass and angular momentum loss via decretion disks. Astron. Astrophys. 527 (2011), A84, 9 pages. DOI 10.1051/0004-6361/201015951
[11] Kurfürst, P.: Models of Hot Star Decretion Disks. PhD Thesis, Masaryk University, Brno (2015).
[12] Kurfürst, P., Feldmeier, A., Krtička, J.: Time-dependent modeling of extended thin decretion disks of critically rotating stars. Astron. Astrophys. 569 (2014), A23. DOI 10.1051/0004-6361/201424272
[13] Kurfürst, P., Feldmeier, A., Krtička, J.: Modeling sgB[e] circumstellar disks. The B[e] Phenomenon: Forty Years of Studies Proc. Conf., Praha 2016, Astron. Soc. Pacific Conf. Ser. 508, Astronomical Society of the Pacific, San Francisco (2017), 17.
[14] Lee, U., Saio, Y., Osaki, H.: Viscous excretion discs around Be stars. Mon. Not. R. Astron. Soc. 250 (1991), 432-437. DOI 10.1093/mnras/250.2.432
[15] LeVeque, R. J.: Nonlinear conservation laws and finite volume methods. Computational Methods for Astrophysical Fluid Flow Saas-Fee Advanced Course 27, Lecture notes 1997, Swiss Society for Astrophysics and Astronomy, Springer, Berlin O. Steiner et al. (1998). DOI 10.1007/3-540-31632-9_1 | Zbl 0931.76052
[16] LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). DOI 10.1017/CBO9780511791253 | MR 1925043 | Zbl 1010.65040
[17] Maeder, A.: Physics, Formation and Evolution of Rotating Stars. Springer, Berlin, Heidelberg (2009). DOI 10.1007/978-3-540-76949-1
[18] Mihalas, D.: Stellar Atmospheres. W. H. Freeman and Co., San Francisco (1978).
[19] Mihalas, D., Mihalas, B. W.: Foundations of Radiation Hydrodynamics. Oxford University Press, New York (1984). MR 0781346 | Zbl 0651.76005
[20] Nadyozhin, D. K.: On the initial phase of interaction between expanding stellar envelopes and surrounding medium. Astrophys. Space Sci. 112 (1985), 225-249. DOI 10.1007/BF00653506 | Zbl 0593.76075
[21] Norman, M. L., Winkler, K.-H. A.: 2-D Eulerian hydrodynamics with fluid interfaces, self-gravity and rotation. Astrophysical Radiation Hydrodynamics NATO Advanced Science Institutes (ASIC, volume 188), Springer, Dordrecht (1986), 187-221. DOI 10.1007/978-94-009-4754-2_6
[22] Roache, P. J.: Computational Fluid Dynamics. Hermosa Publishers, Albuquerque (1976). MR 0411358 | Zbl 0251.76002
[23] Roe, P. L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 135 (1997), 250-258. DOI 10.1006/jcph.1997.5705 | MR 1486275 | Zbl 0890.65094
[24] Sedov, L. I.: Similarity and Dimensional Methods in Mechanics. Nauka, Moskva Russian (1987). MR 0912491 | Zbl 0672.76001
[25] Shakura, N. I., Sunyaev, R. A.: Black holes in binary systems: Observational appearance. Astron. Astrophys. 24 (1973), 337-355.
[26] Skinner, M. A., Ostriker, E. C.: The Athena astrophysical magnetohydrodynamics code in cylindrical geometry. Astrophys. J. Supp. Ser. 188 (2010), 290-311. DOI 10.1088/0067-0049/188/1/290
[27] Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., Simon, J. B.: Athena: A new code for astrophysical MHD. Astrophys. J. Supp. Ser. 178 (2008), 137-177. DOI 10.1086/588755 | MR 1547901
[28] Stone, J. M., Norman, M. L.: ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I---The hydrodynamic algorithms and tests. Astrophys. J. Supp. Ser. 80 (1992), 753-790. DOI 10.1086/191680
[29] Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2009). DOI 10.1007/b79761 | MR 2731357 | Zbl 1227.76006
[30] Truelove, J. K., McKee, C. F.: Evolution of nonradiative supernova remnants. Astrophys. J. Supp. Ser. 120 (1999), 299-326. DOI 10.1086/313176
[31] Leer, B. van: Towards the ultimate conservative difference scheme. IV: A new approach to numerical convection. J. Comput. Phys. 23 (1977), 276-299. DOI 10.1016/0021-9991(77)90095-X | Zbl 0339.76056
[32] Leer, B. van: Flux-vector splitting for the Euler equations. Int. Conf. Numerical Methods in Fluid Dynamics Lecture Notes in Physics 170, Springer, Berlin (1982), 507-512. DOI 10.1007/3-540-11948-5_66
[33] Zel'dovich, Ya. B., Raizer, Yu. P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York (1967). Zbl 0124.42303
Partner of
EuDML logo