[2] Axelsson, O., Blaheta, R.:
Preconditioning of matrices partitioned in $2\times 2$ block form: eigenvalue estimates and Schwarz DD for mixed FEM. Numer. Linear Algebra Appl. 17 (2010), 787-810.
DOI 10.1002/nla.728 |
MR 2722647 |
Zbl 1240.65090
[3] Axelsson, O., Blaheta, R., Byczanski, P.:
Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices. Comput. Visual Sci. 15 (2012), 191-207.
DOI 10.1007/s00791-013-0209-0 |
MR 3148142
[4] Axelsson, O., Blaheta, R., Luber, T.:
Preconditioners for mixed FEM solution of stationary and nonstationary porous media flow problems. Large-Scale Scientific Computing Int. Conf. Lecture Notes in Comput. Sci. 9374, Springer, Cham (2015), 3-14 \99999DOI99999 10.1007/978-3-319-26520-9 1.
MR 3480807
[5] Bai, M., Elsworth, D., Roegiers, J.-C.:
Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resources Research 29 (1993), 1621-1633.
DOI 10.1029/92wr02746
[6] Barenblatt, G. I., Zheltov, I. P., Kochina, I. N.:
Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). PMM, J. Appl. Math. Mech. 24 1286-1303 (1961), English. Russian original translation from Prikl. Mat. Mekh. 24 852-864 1960.
DOI 10.1016/0021-8928(60)90107-6 |
Zbl 0104.21702
[11] Gerke, H. H., Genuchten, M. T. Van:
A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research 29 (1993), 305-319.
DOI 10.1029/92wr02339
[14] Hong, Q., Kraus, J.:
Parameter-robust stability of classical three-field formulation of Biot's consolidation model. Available at arXiv:1706.00724 (2017), 20 pages.
MR 3820123
[15] Joodat, S. H. S., Nakshatrala, K. B., Ballarini, R.:
Modeling flow in porous media with double porosity/permeability: A stabilized mixed formulation, error analysis, and numerical solutions. Available at arXiv:1705.08883 (2017), 49 pages.
MR 3801794
[16] Kolesov, A. E., Vabishchevich, P. N.:
Splitting schemes with respect to physical processes for double-porosity poroelasticity problems. Russ. J. Numer. Anal. Math. Model. 32 (2017), 99-113.
DOI 10.1515/rnam-2017-0009 |
MR 3641710 |
Zbl 06722604
[17] Kraus, J., Lymbery, M., Margenov, S.:
Auxiliary space multigrid method based on additive Schur complement approximation. Numer. Linear Algebra Appl. 22 (2015), 965-986.
DOI 10.1002/nla.1959 |
MR 3426324 |
Zbl 06604518
[19] Nordbotten, J. M., Rahman, T., Repin, S. I., Valdman, J.:
A Posteriori error estimates for approximate solutions of the Barenblatt-Biot poroelastic model. Comput. Methods Appl. Math. 10 (2010), 302-314.
DOI 10.2478/cmam-2010-0017 |
MR 2770296 |
Zbl 1283.65100
[20] Rodrigo, C., Hu, X., Ohm, P., Adler, J. H., Gaspar, F. J., Zikatanov, L.:
New stabilized discretizations for poroelasticity and the Stokes' equations. Available at arXiv:1706.05169 (2017), 20 pages.
MR 3845633
[21] Warren, J. E., Root, P. J.:
The behavior of naturally fractured reservoirs. SPE J. 3 (1963), 245-255.
DOI 10.2118/426-PA