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Abstract. Poroelastic systems describe fluid flow through porous medium coupled with
deformation of the porous matrix. In this paper, the deformation is described by linear elas-
ticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt
model with double porosity/double permeability flow, which distinguishes flow in two re-
gions considered as continua. The main goal is in proposing block diagonal preconditionings
to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite
element method in space and implicit Euler method in time and estimating the condition
number for such preconditioning. The investigation of preconditioning includes its depen-
dence on material coefficients and parameters of discretization.
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1. Introduction

The basic model describing fluid flow through porous medium which under-

goes mechanical deformations of the porous matrix is the Biot’s poroelastic model.

This model can be described by the following system of equations, which holds in

a bounded domain Ω ⊂ R
n with Lipschitz boundary, n = 2, 3:

− div (C : ε(u)) + α grad (p) = f,(1.1)

K−1v + grad (p) = g,(1.2)

α
∂

∂t
div (u) + div (v) + cpp

∂

∂t
p = 0.(1.3)
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Above, ε(u) is the small strain tensor given by the symmetric part of the gradient of

the displacement u, 2ε(u) = ∇u+(∇u)T. We will assume isotropic and homogeneous

linear elastic media with elasticity tensor C defined by the identity

C : ε(u) = 2µε(u) + λdiv (u)I,

where I is the identity tensor and λ and µ are two elastic constants (Lamé moduli).

The flow is described by the velocity v and fluid pressure p, K is the hydraulic con-

ductivity of the porous media given by the ratio of permeability and dynamic viscos-

ity of the fluid, and cpp > 0 is storativity. The constant α is the Biot-Willis constant.

This model is completed by boundary and initial conditions, e.g.

u(x, t) = û(x, t), x ∈ Γu, t ∈ T,(1.4)

σ(x, t) · n(x) = σ̂(x, t), x ∈ Γσ, t ∈ T,(1.5)

v(x, t) · n(x) = v̂(x, t), x ∈ Γv, t ∈ T,(1.6)

p(x, t) = p̂(x, t), x ∈ Γp, t ∈ T,(1.7)

u(x, 0) = u0(x), x ∈ Ω,(1.8)

v(x, 0) = v0(x), x ∈ Ω,(1.9)

p(x, 0) = p0(x), x ∈ Ω,(1.10)

where Γu ∩ Γσ = ∅, Γu ∪ Γσ = ∂Ω, Γp ∩ Γv = ∅, Γp ∪ Γv = ∂Ω, n denotes the

unit outward normal to ∂Ω and û, σ̂ and v̂, p̂ are given vector and scalar functions,

respectively.

The poroelasticity model is successfully applied in many situations when the

porous material is homogeneous or not too heterogeneous.

However, the porous material is frequently highly heterogeneous, e.g. due to frac-

tures in the rock mass or systems of bigger and smaller pores in the soil or filter. In

such cases the fractures or bigger pores create preferable flow paths, whereas the rock

matrix or smaller soil pores, which cover substantially larger part of the volume of

pores, provide larger fluid storage capacity. As explicit modelling of fractures or big

pores is normally above the available computing capacity, a continuous macroscopic

phenomenological double porosity/double permeability model was suggested (first in

[6], [21]) and found a lot of important applications.

This model also known as Biot-Barenblatt model considers fluid flow as a superpo-

sition of two coupled flows in two overlapping continua with different conductivities.

Moreover, both the flows are coupled with deformation of the porous material. Ac-

cording to our field of applications, we denote the continua as rock matrix and system

of fractures, but as already mentioned, the field of physical applications also includes

other situations.
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In this paper, the Biot-Barenblatt model will be described by five variables-

displacement u, two fluxes v1, v2 and two corresponding pressures p1, p2 describing

the fluid flow in matrix and fractures, respectively. The equations describing the

model are [19]

div (C : ε(u))− α1 grad (p
1)− α2 grad (p

2) = f,(1.11)

K−1
1 (x)v1 − grad (p1) = g1,(1.12)

K−1
2 (x)v2 − grad (p2) = g2,(1.13)

α1
∂

∂t
div (u) + div (v1) + c1pp

∂

∂t
p1 + β(p1 − p2) = 0,(1.14)

α2
∂

∂t
div (u) + div (v2) + c2pp

∂

∂t
p2 − β(p1 − p2) = 0.(1.15)

Above, we distinguish different permeability, different storativity and different Biot-

Willis constants for fluid in the matrix and the fracture systems. Moreover, equations

(1.14)–(1.15) involve terms enabling fluid transfer between matrix and fractures. The

transfer depends only on the difference in pressures and the constant β > 0 which

describes the strength of the coupling.

The Biot-Barenblatt model will be discretized by a mixed finite element method

in space and the implicit Euler method in time. Solvability, stability and other prop-

erties of the model and properties of the proposed discretization are not analysed in

this paper, for this we can refer e.g. [14], [15], [16], [19], [20]. Instead, we consider

systems to be solved in each time step of the implicit Euler method and propose and

analyse block diagonal preconditioners, which generalize the preconditioner consid-

ered in [3], [4].

The rest of the paper is organized as follows. Section 2 describes variational formu-

lation and discretization of the Biot-Barenblatt problem. Section 3 deals with aug-

mented type algebraic preconditioning applicable for both single and double porosity

flow systems. The paper then describes numerical experiments in Section 4 and ends

with conclusions.

2. variational formulation and discretization

For the variational formulation of the problem (1.11)–(1.15) with proper boundary

conditions, we consider the spaces

U = {u ∈ [H1(Ω)]n | u = uD on Γu},(2.1)

V = {v ∈ H(div,Ω) | v · n = v̂ on Γv},(2.2)

P = L2(Ω).(2.3)
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Let us denote U0 = U for uD = 0 and V0 = V for v̂ = 0 respectively. Moreover, we

will consider a bilinear form a(u, v) given by

(2.4) a(u,w) = 2µ

∫

Ω

ε(u) : ε(w) + λ

∫

Ω

div u divw.

The three field variational formulation of the single porosity Biot’s problem is then

as follows [14], [20]. Find (u, v, p) ∈ U × V × P such that

a(u,w)− α(p, divw) = (f̂ , w) ∀w ∈ U0,(2.5)

(K−1v, η)− (p, div η) = (ĝ, η) ∀ η ∈ V0,(2.6)

α
( ∂

∂t
div u, q

)

+ (div v, q) +
(

cpp
∂

∂t
p, q

)

= 0 ∀ q ∈ P,(2.7)

where (·, ·) denotes the L2 scalar product. Instead of the L2 inner product, (f̂ , ·),
(ĝ, ·) denote bounded linear functionals that include the contribution of the given
boundary conditions.

For the double porosity/double permeability problem, boundary conditions are

imposed for all flow variables. If v1 · n = v2 · n = v̂ on Γv then a similar five field

formulation looks like

a(u,w)− α1(p
1, divw)− α2(p

2, divw) = (f̂ , v) ∀w ∈ U,(2.8)

(K−1
1 v1, η)− (p1, div η) = (ĝ1, η) ∀ η ∈ V,(2.9)

(K−1
2 v2, η)− (p2, div η) = (ĝ2, η) ∀ η ∈ V,(2.10)

α1

( ∂

∂t
div u, q

)

+ (div v1, q) +
(

cpp
∂

∂t
p1, q

)

+ β(p1 − p2, q) = 0 ∀ q ∈ P,(2.11)

α2

( ∂

∂t
div u, q

)

+ (div v2, q) +
(

cpp
∂

∂t
p2, q

)

− β(p1 − p2, q) = 0 ∀ q ∈ P.(2.12)

The system of partial differential equations (2.8)–(2.12) can be discretized first

in space using the finite element method. Piecewise linear P (1) elements are used

for representation of displacement u, lowest order RT (0) elements are used for v,

v1, v2, and P (0) elements for p, p1, and p2. The difference RT (0)− P (0) is a stable

pair of mixed finite elements, see [8]. Using the same elements pairs for both the

velocities and pressures is natural. There are other types of finite elements that can

be considered for discretization, but the further analysis exploits the fact that P (0)

elements are used for pressures.

In this context, it should be mentioned that recently a significant progress was

obtained in the analysis of an appropriate choice of discretization spaces for full pa-

rameter robust stability of the classical three-field formulation (displacement, Darcy

velocity, pore pressure) of Biot’s consolidation model, see [14], [20]. In the present
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paper, we consider systems arising from P (1) − RT (0)− P (0) discretization, which

are not uniformly stable but work well in many engineering applications.

Discretization in time is done by the implicit Euler scheme with timestep τ . More

details about discretization for the single permeability system can be found e.g. in

[4], [14], [20]. Discretization of double permeability system is considered e.g. in [15],

[16], [19].

The space and time discretization leads to a time-stepping algorithm with the

solution of a linear system in each time step. The matrix of this time step system

can be symmetrized by a row scaling. The symmetrized matrix has the form

(2.13) A =





A BT

u

τM τBT

v

Bu τBv −D



 ,

where for the single porosity Biot’s problem the matrices A,M,D,Bu, Bv represent

the bilinear forms in the corresponding finite element spaces. If 〈·, ·〉 represents
the Euclidean inner product in the algebraic vector space and ξh ↔ ξ denotes the

correspondence between the functions in finite element spaces and their algebraic

representation, then

〈Au, v〉 = a(uh, vh) on Uh × Uh,

〈Mv, η〉 = m(vh, ηh) = (K−1vh, ηh) on Vh × Vh,

〈Dp, q〉 = d(ph, qh) = (cppph, qh) on Ph × Ph,

〈Buu, q〉 = bu(uh, qh) = −(qh, div (uh)) on Uh × Ph,

〈Bvu, v〉 = bv(vh, ph) = −(ph, div (vh)) on Vh × Ph.

For the double porosity Biot’s problem the matrices M , D, Bu, Bv have doubled

block structure and we get

Ā =





A B̄T

u

τM̄ τB̄T

v

B̄u τB̄v −D̄



 ,(2.14)

M̄ =

[
M1

M2

]

, B̄u =

[
α1Bu

α2Bu

]

, B̄v =

[
Bv

Bv

]

,

and

D̄ =

[
D1 + βτD0 −βτD0

−βτD0 D2 + βτD0

]

,

where D0, D1, D2 are pressure mass matrices, 〈D0p, q〉 = (ph, qh) on Ph×Ph, D1, D2

include weights c1pp and c2pp, respectively. For constant c
i
pp, Di = cippD0, i = 1, 2.

For the piecewise constant P (0) the elements for pressure, D0, D1, D2 are diagonal.
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Further, M,M1 and M2 are the velocity mass matrices weighted by the inverse of

the respective conductivities. The difference between M1 andM2 is only in different

conductivities. Matrices Bv and Bu are discretizations of the divergence of flux and

the displacement. Note that the repetition of the blocks in doubled structure is due

to the use of the same finite elements both for pressures and fluxes.

We will assume that the elasticity stiffness matrix A is symmetric and positive

definite (SPD). Then for the single porosity, the system matrix A is symmetric and
indefinite with respect to its (saddle point) structure with diagonal blocks

[
A

M

]

and −D , where the first block is symmetric positive definite and the second is

symmetric negative definite.

The same argument can be used for double porosity matrix Ā, just the diagonal
blocks are

[
A

M̄

]

and −D̄,

(2.15) D̄ =

[
D1

D2

]

+

[
βτD0 −βτD0

−βτD0 βτD0

]

,

is SPD as the first matrix in the sum is positive definite and the second is positive

semidefinite (see the accompanying quadratic form).

In the case of constant c1pp and c2pp, we get

(2.16) D̄ =

[
(c1pp + βτ)D0 −βτD0

−βτD0 (c2pp + βτ)D0

]

and D̄ also admits the tensor product expression, see [12],

(2.17) D̄ =

[
c1pp + βτ −βτ

−βτ c2pp + βτ

]

⊗ [D0 ]

which allows a simple computation of the inverse of D̄,

(2.18) D̄−1 =
1

ξ

[
(c2pp + βτ)D0

−1 βτD0
−1

βτD0
−1 (c1pp + βτ)D0

−1

]

,

where

(2.19) ξ = (c1pp + βτ)(c2pp + βτ) − β2τ2.

The tensor product expression (2.17) and the fact that the eigenvalues of the

tensor product are products of the eigenvalues of the factors allows to compute the

eigenvalues of D̄,

(2.20) λi,1,2 = δi
c1pp + c2pp + 2βτ ±

√

(c1pp − c2pp)
2 + 4β2τ2

2
,
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where δi are eigenvalues of D0. For uniform mesh we have D0 = δI, which means

that all δi are equal to δ.

3. Preconditioning

For poroelasticity with single porosity, two SPD preconditioners for the system

with matrix (2.13) were suggested and analysed in [3], [4], namely

PF =





S11 S21

S12 S22

+D



 , PD =





S11

S22

+D



 ,

where

S =

[
S11 S21

S12 S22

]

=

[
A

M

]

+

[
BT

u

BT

v

]

D−1 [Bu Bv ] .

Our aim is to extend these preconditioners and their analysis to Biot-Barenblatt

double porosity/double permeability matrix Ā introduced in (2.14). It means that
the inner structure and doubled M̄, D̄, B̄u, B̄v have to be taken into account.

P̄F =





S̄11 S̄21

S̄12 S̄22

+D̄



 , P̄D =





S̄11

S̄22

+D̄



 ,(3.1)

S̄ =

[
S̄11 S̄21

S̄12 S̄22

]

=

[
A

M̄

]

+

[
B̄T

u

B̄T

v

]

D̄−1 [ B̄u B̄v ] .

Note that PF and P̄F are SPD block diagonal preconditioners belonging to a broader

class of preconditioners for (generalized) saddle point matrices, see e.g. [7], [10]. We

choose an augmented type preconditioner, because it utilizes the benefit of special

structure and explicit inverse (2.18) of the lower-right block. Moreover, we choose

SPD block diagonal preconditioner for possibility of spectral analysis of the properties

of the preconditioned system. On the other hand, the related triangular precondi-

tioner can be more efficient.

With respect to the Schur complement structure, we immediately get a theorem

on localization of the spectrum σ(P̄−1
F Ā).

Theorem 1. The following spectral estimate holds for the preconditioned system

P̄−1
F Ā:

(3.2) σ(P̄−1
F Ā) ⊂

(−1−
√
5

2
,−1

〉

∪
(−1 +

√
5

2
, 1

〉

.
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P r o o f. Let us consider the eigenvalue problem Āx = λP̄Fx, where the following

partitioning for Ā and PF are used:

Ā =

[A11 A12

A21 A22

]

, P̄F =

[
S̄

D̄

]

, A22 = −D̄, S̄ = A11 +A12D̄
−1A21.

As A22 is SPD, we can use the factorization of Ā, which yields
[
I1 A12A−1

22

I2

] [
S̄

A22

] [
I1

A−1
22 A21 I2

] [
x1

x2

]

= λ

[
S̄

D̄

] [
x1

x2

]

,

[
S̄

A22

] [
I1

A−1
22 A21 I2

] [
x1

x2

]

= λ

[
I1 −A12A−1

22

I2

] [
S̄

D̄

] [
x1

x2

]

,

[
S̄ 0

A21 A22

] [
x1

x2

]

= λ

[
S̄ A12

0 −A22

] [
x1

x2

]

,

i.e.

S̄x1 = λS̄x1 + λA12x2,(3.3)

A21x1 +A22x2 = −λA22x2.(3.4)

For λ 6= −1 we get

(1 + λ)A22x2 = −A21x1,

x2 = − 1

1 + λ
A−1

22 A21x1,

(1− λ)S̄x1 = − λ

1 + λ
A12A−1

22 A21x1 =
λ

1 + λ
S̄0x1.

As S̄ and A22 are nonsingular, A is also nonsingular and 0 /∈ σ(P−1
F A). Thus λ 6= 0

and we get (1− λ2)/λ = µ ∈ σ(S̄0, S̄) and consequently λ = 1
2 (−µ±

√

µ2 + 4). From

the positive definiteness of S̄ and positive semidefiniteness of S̄0, we get µ > 0, and

due to positive definiteness of S̄− S̄0, we have µ < 1 for µ ∈ σ(S̄0, S̄). It is also easy

to show that both branches −µ±
√

µ2 + 4 are decreasing, so the limits are given by

µ = 0, 1. This gives (3.2). �

Note that the proof uses only the algebraical Schur complement structure and

does not require any other properties of matrices Ā and P̄F .

Further, we will investigate the possibility of simplification of the Schur com-

plement S̄ =
[
S̄11 S̄21

S̄12 S̄22

]

in the preconditioner P̄F by its block diagonal part S̄D =
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[
S̄11

S̄22

]

appearing in the preconditioner P̄D. To this end we analyse the blocks

S̄11 = A+ B̄T

u D̄
−1B̄u,(3.5)

S̄22 = τM̄ + τ2B̄T

v D̄
−1B̄v,(3.6)

S̄12 = S̄T

21 = τB̄T

u D̄
−1B̄v.(3.7)

We will do this investigation under the assumption thatD1 = c1ppD0 andD2 = c2ppD0.

The analysis for one porosity Biot problem was performed in [4], the following

theorem extends the analysis to the double porosity/permeability Biot-Barenblatt

problem.

Theorem 2. There is a constant γ̄ ∈ 〈0, 1) such that

(1− γ̄)S̄D 6 S̄ 6 (1 + γ̄)S̄D,

where the Loewner ordering between matrices is used, i.e. X 6 Y for two symmetric

and positive matrices X and Y means that Y −X is positive semidefinite.

Note that in the proof, we derive an estimate for γ̄, which involves the quantities

αn =
√

α2
1 + α2

2, cd and cel. The constant cd is the minimum eigenvalue of D̄
−1
0 D̄,

D̄0 =
[
D0

D0

]

is the L2(Ω)×L2(Ω) mass matrix for P (0) elements. Then cd is given

by (2.20) for nonsingular meshes:

(3.8) cd =
c1pp + c2pp + 2βτ +

√

(c1pp − c2pp)
2 + 4β2τ2

2
.

For the special case of c1pp = c2pp = cpp we have

(3.9) cd = cpp + 2βτ

The list of constants is completed by cel =
√

λ+ 2µ/n for isotropic elasticity in

Ω ⊂ R
n.

P r o o f. The analysis uses a strengthened Cauchy-Schwarz inequality, see [18].

We have

|〈S̄12v, u〉| = |〈τB̄T

u D̄
−1B̄vv, u〉| = |〈τD̄−1/2B̄vv, D̄

−1/2B̄uu〉|

6

√

〈τD̄−1/2B̄vv, τD̄−1/2B̄vv〉
√

〈D̄−1/2B̄uu, D̄−1/2B̄uu〉

6

√

〈τ2B̄T
v D̄

−1B̄vv, v〉
√

〈B̄T
u D̄

−1B̄uu, u〉

6 γ̄
√

〈(τM̄ + τ2B̄T
v D̄

−1B̄v)v, v〉
√

〈(A+ B̄T
u D̄

−1B̄u)u, u〉
= γ̄

√

〈S11u, u〉
√

〈S22v, v〉.

569



The constant γ̄ < 1 comes from the inequality B̄T

u D̄
−1B̄u 6 (α2

n/(celcd)
2)A, which

can be derived as follows:

〈B̄T

u D̄−1B̄u
︸ ︷︷ ︸

q

u, u〉 = 〈B̄T

u q, u〉 =
∫

Ω

α1 div(uh) · q1h dx+

∫

Ω

α2 div(uh) · q2h dx(3.10)

6 αn‖ div(uh)‖L2(Ω)‖qh‖L2(Ω)×L2(Ω)

6
αn

cel
〈Au, u〉1/2〈D̄0q, q〉1/2

6
αn

celcd
〈Au, u〉1/2〈D̄q, q〉1/2

6
αn

celcd
〈Au, u〉1/2〈B̄uu, D̄

−1B̄uu〉1/2.

Finally,
(

1 +
(celcd)

2

α2
n

)

B̄T

u D̄
−1B̄u 6 A+ B̄T

u D̄
−1B̄u,

i.e.

(3.11) γ̄ 6
1

1 + (celcd)2α
−2
n

.

�

Note that the upper bound of γ̄ does not depend on permeabilities nor on spatial

discretization. Generally, low cpp and βτ decreases the efficiency of the estimate. The

analysis could be extended to involve a contribution from B̄T

v D̄
−1B̄v 6 cM̄ , which

can be also substantial. The results from Theorems 1 and 2 can provide bounds for

the spectra σ(P̄−1
D Ā) according to the following simple lemma.

Lemma 1. Let X is a symmetric matrix, P and Q are SPD matrices, c0Q 6

P 6 c1Q. For XP = P−1/2XP−1/2, let σ(Xp) ⊂ 〈−a,−b〉 ∪ 〈c, d〉, where a, b,

c, d are positive, α2I 6 X2
P 6 β2I, where α and β are positive, α2 = min{b2, c2},

β2 = max{a2, d2}.
Then for XQ = Q−1/2XQ−1/2,

(3.12) c20α
2I 6 X2

Q 6 c21β
2I and σ(XQ) ⊂ 〈−c1β,−c0α〉 ∪ 〈c0α, c1β〉.

P r o o f. The spectral equivalence c0Q 6 P 6 c1Q implies that c0I 6

Q−1/2PQ−1/2 = EET 6 c1I. For E
TE = P 1/2Q−1P 1/2 we get the same bounds

c0I 6 P 1/2Q−1P 1/2 = ETE 6 c1I as σ(EET) = σ(ETE).

Further,

XQ = Q−1/2XQ−1/2 = Q−1/2P 1/2XPP
1/2Q−1/2
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and

(X2
Qx, x) = (XQx,XQx) = (Q−1/2P 1/2XPP

1/2Q−1/2x,Q−1/2P 1/2XP 1/2Q−1/2x)

= ((P 1/2Q−1P 1/2)XPP
1/2Q−1/2x,APP

1/2Q−1/2x).

Thus,

(X2
Qx, x) > c0(XPP

1/2Q−1/2x,XPP
1/2Q−1/2x)

> c0α
2(P 1/2Q−1/2x, P 1/2Q−1/2x)

> c0α
2(Q−1/2P 1Q−1/2x, x)

> c20α
2(x, x).

Similarly, (X2
Qx, x) 6 c21β

2(x, x). Therefore, the estimates (3.12) hold. �

Properties of S̄11. We can exploit the expression for inverse of D̄, see (2.18). It

provides

(3.13) S̄11 = A+
1

ξ
(α2

1c
1
pp + α2

2c
2
pp + (α1 + α2)

2βτ)BT

uD0
−1Bu.

The matrix A represents the bilinear form (2.4), which for the isotropic elastic ma-

terial takes the form

〈Au, v〉 =
∫

Ω

λdiv (uh) div (vh) +

∫

Ω

2µε(uh) : ε(vh).

For RT (0)−P (0) discretization, it holds thatD0 corresponds to elements E of the FE

division and the area/volume |E| is the corresponding diagonal element. Moreover,
div uh is constant on E. Consequently,

〈BT

uD0
−1Buu, v〉 = 〈D0

−1Buu,Buv〉
∑

E

|E|−1

∫

E

div uh

∫

E

div vh(3.14)

=
∑

E

∫

E

div uh div vh =

∫

Ω

div uh div vh.

Thus, for RT (0) elements, S̄11 can be viewed as an elasticity stiffness matrix

〈S̄11u, v〉 =
∫

Ω

[

λ+
1

ξ
(α2

1c
1
pp + α2

2c
2
pp + (α1 + α2)

2βτ)
]

div uh div vh

+

∫

Ω

2µε(uh) : ε(vh).

571



In case of higher order finite elements for velocity, S11 will be not exactly in the

form of an elasticity stiffness matrix, but will be spectrally equivalent to one. Any

technique that effectively solves elastic systems can be used to solve systems with

S̄11, e.g. algebraic multigrid like AMG Boomer [13].

Properties and further simplification of S̄22. The block S̄22 has the form

S22 = τ

[
M1

M2

]

+ C,

where

C =

[

τ2
c2
pp

+βτ

ξ BTD0
−1B τ2 βτ

ξ BTD0
−1B

τ2 βτ
ξ BTD0

−1B τ2
c1
pp

+βτ

ξ BTD0
−1B

]

=
τ2

ξ

[
(c2pp + βτ) βτ

βτ (c1pp + βτ)

]

⊗ [BTD0
−1B ] .

This form enables us to show that

|〈Cp, q〉| 6 γC〈Cp, p〉1/2〈Cq, q〉1/2,

where

(3.15) γC =
βτ

√

(c1pp + βτ)(c2pp + βτ)
< 1.

Consequently (see e.g. [18]), for Loewner ordering we get

(1− γC)

[
τM1 + C11

τM2 + C22

]

6 S̄22 6 (1 + γC)

[
τM1 + C11

τM2 + C22

]

.

Hence, the system with S̄22 can be solved by using some inner iterative method,

e.g. preconditioned conjugate gradients, using the block diagonal preconditioning,

where individual blocks can be solved e.g. by a special algorithm introduced in [17].

We can also perform a second step of diagonalization of PF and use the third type

of preconditioner

(3.16) P̄DD =










S11

τM1 + C11

τM2 + C22

(c1pp + βτ)D0 βτD0

βτD0 (c2pp + βτ)D0










.
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4. Numerical experiments

Following [16], we will consider a model problem on the unit square Ω, see Fig. 1.

Γ4

Γ3 Γ3
Ω

Γ2Γ2

Γ1

Figure 1. Computational domain.

The boundary conditions are set as follows:

⊲ σ(x) ·n = 100(x− 0.4)(0.6−x) on Γ1, σ ·n = 0 on Γ2, u ·n = 0 and (σ ·n)×n = 0

on Γ3 and u = 0 on Γ4,

⊲ pm = pf = 0 on Γ1 and ∂pm/∂n = ∂pf/∂n = 0 on Γ2 ∪ Γ3 ∪ Γ4.

Initial conditions are zero displacement and zero fluid pressures, i.e. u(x, 0) = 0 and

pm(x, 0) = pf (x, 0) = 0 for x ∈ Ω.

The problem is discretized by P (1)−RT (0)−P (0) elements in space and implicit

Euler method in time on a uniform grid with 100 × 100 cells each divided to two

triangles and with τ = 0.05. The problem parameters are taken from [16] and given

in Table 1.

parameter unit value

λ MPa 4.2

µ MPa 2.4

k1 10−15m2 6.18

k2 10−15m2 27.2

c1pp (GPa)−1 54

c2pp (GPa)−1 14

α1 − 0.95

α2 − 0.12

β 10−10 kg/(m · s) 5

Table 1. Problem parameters.
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For solving the systems with matrix Ā (given by (2.14)) we use MINRES method
with preconditioners P̄D (defined by (3.1)) or P̄DD (defined by (3.16)). In Tables 2

and 3, we compare numbers of iterations for solving the system Ā with P̄D and P̄F .

The accuracy is driven by the Euclidean norm of residual and the iterations are

stopped when‖ri‖/‖r0‖ 6 10−6, the initial guess is zero. The inner block subsystems

are solved by a direct solver. Tables 2 and 3 include results for the basic set of

parameters from Table 1 as well as for modified conductivities and in Table 3 also

for a changed water transfer coefficient.

k1 · 10−2 k1 · 10−1 k1
k2 21/18 21/18 21/18

k2 · 101 29/21 29/21 29/21

k2 · 102 47/29 47/29 47/29

Table 2. Numbers of iterations for solving the system with matrix Ā and preconditioner
P̄D/P̄F up to relative residual accuracy ε = 10−6.

k1 · 10−2 k1 · 10−1 k1
k2 19/16 19/16 19/16

k2 · 101 29/19 29/19 29/19

k2 · 102 46/25 46/25 46/25

Table 3. Numbers of iterations for solving the system with matrix Ā and preconditioner
P̄D/P̄F up to relative residual accuracy ε = 10−6. The constant β is changed to
β = 10−8.

Note that the same number of iterations as reported in Tables 2 and 3 will be

obtained if P̄D is replaced by P̄DD. This fact is not surprising as the strengthened

Cauchy-Schwarz constant γC is γC = 0.0009 for β = 5 · 10−10 and γC = 0.082 for

β = 5 · 10−8.

Note also that further increasing β does not deteriorate the behaviour with P̄F

(estimate from Theorem 1 does not depend on β) nor the behaviour with P̄D (esti-

mate from Theorem 2 with estimate (3.11), which decreases with increased β). The

experiments carried out with parameter β in range from 10−10 to 10−2 showed no

significant difference in the observed numbers of iterations for preconditioners P̄D,

P̄F and even P̄DD. The observed general trend is that a bigger β leads to a smaller

number of iterations. The convergence depends on β less than on the permeabilities

k1 and k2. The interesting fact is that P̄DD performs almost equally well as PD

even for γC close to 1. This means that our analysis of the relation between P̄D

and P̄DD gives for larger β a somehow pessimistic estimate of quality of P̄DD as

a preconditioner for Ā.
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To compare the numbers of iterations for different preconditioners P̄ we watch the
norm of residuals ‖ri‖, not the norm ‖ri‖P̄−1 , which is minimized by MINRES, see

e.g. [10]. It also avoids the problem with large drop of ‖ri‖P̄−1 in the first iterations.

An idea about the decrease of different error indicators for a selected case with the

original input data k1, k2, c1pp, c
2
pp and β can be seen in Fig. 2.

0 2 4 6 8 10 12 14 16
−12

−10

−8

−6

−4

−2

0

2

4

Figure 2. Plot of the decrease of the logarithm of norms of residual ‖ri‖ (bold line), ‖ri‖
P̄−1

(dashed line) and for the pseudo-error ‖ui − u⋆d‖ (dotted line), where u⋆d is the
solution of the system with matrix Ā by a direct solver. The preconditioner
P̄ = P̄D.

5. Conclusion

Dual permeability model has been used for a long time for simulation of flow in

naturally fractured reservoirs (see e.g. [5]). Our research was motivated by a study

of flow in rock mass fractured naturally as well as by excavation, especially for flow

in excavated damage zone (EDZ). Such analysis is important for the performance

assessment of nuclear waste repository [9]. The application can be also important for

investigation of enhanced geothermal systems. The model can be further extended

to cover variably saturated flow, see e.g. [11].

Inspired by preconditioning introduced for the single porosity Biot’s system [3],

[4], an algebraic block-type preconditioning is presented for the dual permeability

model and analysed. Preconditioners P̄F (defined by (3.1)), P̄D (defined by (3.1))

and P̄DD (defined by (3.16)) are proposed to solve systems with matrix Ā (given
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by (2.14)). The block diagonal preconditioner P̄D is analysed as a preconditioning

for P̄F .

We have shown that the block diagonal preconditioning is viable for the double

permeability model, at least for some range of physical parameters for which γ̄ and

γC are far from 1. We can quantify this range by the provided estimates of γ̄ for

the whole preconditioner and γC for the S̄22 block of the preconditioner. Note that

block diagonal preconditioners create space for natural parallelization, but the use

of extended, triangular preconditioner is also possible.

Solvers for individual blocks S̄11, S̄22, and D̄ are needed for implementation of P̄ .
The algebraic multigrid is proposed to be used for S̄11, inner preconditioned conju-

gate gradients using the block diagonal as a preconditioning can be used for S̄22, and

inversion of D̄ is trivial, see (2.18). Solvers for H(div) type problems on the block

diagonal of S̄22 can be chosen as e.g. in [1], [2] or [17].
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