Previous |  Up |  Next

Article

Keywords:
quantity of interest; discontinuous Galerkin; a posteriori error estimate; algebraic error
Summary:
We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.
References:
[1] Ainsworth, M., Rankin, R.: Guaranteed computable bounds on quantities of interest in finite element computations. Int. J. Numer. Methods Eng. 89 (2012), 1605-1634. DOI 10.1002/nme.3276 | MR 2899560 | Zbl 1242.65232
[2] Arioli, M., Liesen, J., Międlar, A., Strakoš, Z.: Interplay between discretization and algebraic computation in adaptive numerical solution of elliptic PDE problems. GAMM-Mitt. 36 (2013), 102-129. DOI 10.1002/gamm.201310006 | MR 3095916 | Zbl 1279.65130
[3] Babuška, I., Rheinboldt, W. C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978), 736-754. DOI 10.1137/0715049 | MR 0483395 | Zbl 0398.65069
[4] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics, ETH Zürich, Birkhäuser, Basel (2003). DOI 10.1007/978-3-0348-7605-6 | MR 1960405 | Zbl 1020.65058
[5] Bank, R. E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985), 283-301. DOI 10.2307/2007953 | MR 0777265 | Zbl 0569.65079
[6] Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10 (2001), 1-102. DOI 10.1017/S0962492901000010 | MR 2009692 | Zbl 1105.65349
[7] Dolejší, V.: ANGENER---software package. Charles University Prague, Faculty of Mathematics and Physics, www.karlin.mff.cuni.cz/ {dolejsi/angen/angen.htm} (2000).
[8] Dolejší, V.: $hp$-DGFEM for nonlinear convection-diffusion problems. Math. Comput. Simul. 87 (2013), 87-118. DOI 10.1016/j.matcom.2013.03.001 | MR 3046879
[9] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow. Springer Series in Computational Mathematics 48, Springer, Cham (2015). DOI 10.1007/978-3-319-19267-3 | MR 3363720 | Zbl 06467550
[10] Dolejší, V., May, G., Roskovec, F., Šolín, P.: Anisotropic $hp$-mesh optimization technique based on the continuous mesh and error models. Comput. Math. Appl. 74 (2017), 45-63. DOI 10.1016/j.camwa.2016.12.015 | MR 3654083 | Zbl 06786795
[11] Dolejší, V., Roskovec, F.: Goal oriented a posteriori error estimates for the discontinuos Galerkin method. Programs and Algorithms of Numerical Mathematics 18, Proceedings of Seminar, Janov nad Nisou 2016 Institute of Mathematics CAS, Praha J. Chleboun et al. (2017), 15-23. DOI 10.21136/panm.2016.02 | MR 3791862
[12] Dolejší, V., Šolín, P.: $hp$-discontinuous Galerkin method based on local higher order reconstruction. Appl. Math. Comput. 279 (2016), 219-235. DOI 10.1016/j.amc.2016.01.024 | MR 3458017
[13] Giles, M., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11 (2002), 145-236. DOI 10.1017/S096249290200003X | MR 2009374 | Zbl 1105.65350
[14] Greenbaum, A., Pták, V., Strakoš, Z.: Any nonincreasing convergence curve is possible for GMRES. SIAM J. Matrix Anal. Appl. 17 (1996), 465-469. DOI 10.1137/S0895479894275030 | MR 1397238 | Zbl 0857.65029
[15] Harriman, K., Gavaghan, D., Süli, E.: The importance of adjoint consistency in the approximation of linear functionals using the discontinuous Galerkin finite element method. Technical Report, Oxford University Computing Laboratory, Oxford (2004).
[16] Harriman, K., Houston, P., Senior, B., Süli, E.: $hp$-version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. Recent Advances in Scientific Computing and Partial Differential Equations, Hong Kong 2002 Contemp. Math. 330, American Mathematical Society, Providence S. Y. Cheng et al. (2003), 89-119. DOI 10.1090/conm/330/05886 | MR 2011714 | Zbl 1037.65117
[17] Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45 (2007), 2671-2696. DOI 10.1137/060665117 | MR 2361907 | Zbl 1189.76341
[18] Hartmann, R., Houston, P.: Symmetric interior penalty DG methods for the compressible Navier-Stokes equations. II. Goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3 (2006), 141-162. MR 2237622 | Zbl 1152.76429
[19] Houston, P., Schwab, C., Süli, E.: Discontinuous $hp$-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002), 2133-2163. DOI 10.1137/S0036142900374111 | MR 1897953 | Zbl 1015.65067
[20] Huynh, H. T.: A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. 18th AIAA Computational Fluid Dynamics Conference, Miami, Florida, 2007. DOI 10.2514/6.2007-4079
[21] Meidner, D., Rannacher, R., Vihharev, J.: Goal-oriented error control of the iterative solution of finite element equations. J. Numer. Anal. 17 (2009), 143-172. DOI 10.1515/JNUM.2009.009 | MR 2543373 | Zbl 1169.65340
[22] Nochetto, R. H., Veeser, A., Verani, M.: A safeguarded dual weighted residual method. IMA J. Numer. Anal. 29 (2009), 126-140. DOI 10.1093/imanum/drm026 | MR 2470943 | Zbl 1168.65070
[23] Rannacher, R., Vihharev, J.: Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors. J. Numer. Math. 21 (2013), 23-62. DOI 10.1515/jnum-2013-0002 | MR 3043432 | Zbl 1267.65184
[24] Richter, T., Wick, T.: Variational localizations of the dual weighted residual estimator. J. Comput. Appl. Math. 279 (2015), 192-208. DOI 10.1016/j.cam.2014.11.008 | MR 3293320 | Zbl 1306.65283
[25] Šolín, P., Demkowicz, L.: Goal-oriented $hp$-adaptivity for elliptic problems. Comput. Methods Appl. Mech. Eng. 193 (2004), 449-468. DOI 10.1016/j.cma.2003.09.015 | MR 2033961 | Zbl 1044.65082
[26] Süli, E., Houston, P., Schwab, C.: $hp$-DGFEM for partial differential equations with nonnegative characteristic form. B. Cockburn et al. Discontinuous Galerkin Methods. Theory, Computation and Applications, Newport 1999 Lect. Notes Comput. Sci. Eng. 11, Springer, Berlin (2000), 221-230. DOI 10.1007/978-3-642-59721-3_16 | MR 1842176 | Zbl 0946.65102
Partner of
EuDML logo