[3] Hodges W.:
Model Theory. Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993.
MR 1221741 |
Zbl 1139.03021
[6] Ingleton A.W.:
The Hahn-Banach theorem for non-Archimedean valued fields. Proc. Cambridge Philos. Soc. 48 (1952), 41–45.
MR 0045939 |
Zbl 0046.12001
[8] Luxemburg W.A.J.:
Reduced powers of the real number system and equivalents of the Hahn-Banach extension theorem. in Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967), Holt, Rinehart and Winston, New York, 1969, pp. 123–137.
MR 0237327 |
Zbl 0181.40101
[9] Morillon M.:
Linear forms and axioms of choice. Comment. Math. Univ. Carolin. 50 (2009), no. 3, 421-431.
MR 2573415 |
Zbl 1212.03034
[10] Narici L., Beckenstein E., Bachman G.:
Functional Analysis and Valuation Theory. Pure and Applied Mathematics, 5, Marcel Dekker, Inc., New York, 1971.
MR 0361697 |
Zbl 0218.46004
[11] Schneider P.:
Nonarchimedean Functional Analysis. Springer Monographs in Mathematics, Springer, Berlin, 2002.
MR 1869547 |
Zbl 0998.46044
[12] van Rooij A.C.M.:
Non-Archimedean Functional Analysis. Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker, Inc., New York, 1978.
MR 0512894 |
Zbl 0396.46061
[13] van Rooij A.C.M.:
The axiom of choice in $p$-adic functional analysis. In $p$-adic functional analysis (Laredo, 1990), Lecture Notes in Pure and Appl. Math., 137, Dekker, New York, 1992, pp. 151–156.
MR 1152576 |
Zbl 0781.46055
[14] Warner S.:
Topological Fields. North-Holland Mathematics Studies, 157; Notas de Matemática [Mathematical Notes], 126; North-Holland Publishing Co., Amsterdam, 1989.
MR 1002951 |
Zbl 0683.12014