Article
Keywords:
functional equations; exponential polynomials; generalized functions; forward differences
Summary:
Given $\{h_1,\cdots,h_{t}\}$ a finite subset of $\mathbb{R}^d$, we study the continuous complex valued functions and the Schwartz complex valued distributions $f$ defined on $\mathbb{R}^d$ with the property that the forward differences $\Delta_{h_k}^{m_k}f$ are (in distributional sense) continuous exponential polynomials for some natural numbers $m_1,\cdots,m_t$.
References:
[3] Almira J.M., Abu-Helaiel K.F.:
On Montel's theorem in several variables. Carpathian J. Math. 31 (2015), 1–10.
MR 3408590 |
Zbl 1349.47007
[5] Almira J.M., Székelyhidi L.:
Montel–type theorems for exponential polynomials. Demonstr. Math. 49 (2016), no. 2, 197–212.
MR 3507933 |
Zbl 1344.43002
[7] Hardy G.H., Wright E.M.:
An Introduction to the Theory of Numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.
MR 0568909
[8] Waldschmidt M.: Topologie des Points Rationnels. Cours de Troisi\`{e}me Cycle 1994/95 Université P. et M. Curie (Paris VI), 1995.