Previous |  Up |  Next

Article

Keywords:
functional equations; exponential polynomials; generalized functions; forward differences
Summary:
Given $\{h_1,\cdots,h_{t}\}$ a finite subset of $\mathbb{R}^d$, we study the continuous complex valued functions and the Schwartz complex valued distributions $f$ defined on $\mathbb{R}^d$ with the property that the forward differences $\Delta_{h_k}^{m_k}f$ are (in distributional sense) continuous exponential polynomials for some natural numbers $m_1,\cdots,m_t$.
References:
[1] Aksoy A., Almira J.M.: On Montel and Montel-Popoviciu theorems in several variables. Aequationes Math. 89 (2015), no. 5, 1335–1357. DOI 10.1007/s00010-014-0329-8 | MR 3390165 | Zbl 1337.47051
[2] Almira J.M.: Montel's theorem and subspaces of distributions which are $\Delta^m$-invariant. Numer. Funct. Anal. Optim. 35 (4) (2014), 389–403. DOI 10.1080/01630563.2013.813537 | MR 3177061 | Zbl 1327.47005
[3] Almira J.M., Abu-Helaiel K.F.: On Montel's theorem in several variables. Carpathian J. Math. 31 (2015), 1–10. MR 3408590 | Zbl 1349.47007
[4] Almira J.M., Székelyhidi L.: Local polynomials and the Montel theorem. Aequationes Math. 89 (2015), 329-338. DOI 10.1007/s00010-014-0308-0 | MR 3340213 | Zbl 1321.43007
[5] Almira J.M., Székelyhidi L.: Montel–type theorems for exponential polynomials. Demonstr. Math. 49 (2016), no. 2, 197–212. MR 3507933 | Zbl 1344.43002
[6] Anselone P.M., Korevaar J.: Translation invariant subspaces of finite dimension. Proc. Amer. Math. Soc. 15 (1964), 747–752. DOI 10.1090/S0002-9939-1964-0169048-7 | MR 0169048 | Zbl 0138.37903
[7] Hardy G.H., Wright E.M.: An Introduction to the Theory of Numbers. Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979. MR 0568909
[8] Waldschmidt M.: Topologie des Points Rationnels. Cours de Troisi\`{e}me Cycle 1994/95 Université P. et M. Curie (Paris VI), 1995.
Partner of
EuDML logo