Previous |  Up |  Next

Article

Keywords:
quasigroup; linear identity; associativity; commutativity
Summary:
Let $G$ be a quasigroup. Associativity of the operation on $G$ can be expressed by the symbolic identity $R_x L_y = L_y R_x$ of left and right multiplication maps; likewise, commutativity can be expressed by the identity $L_x=R_x$. In this article, we investigate symmetric linear identities: these are identities in left and right multiplication symbols in which every indeterminate appears exactly once on each side, and whose sides are mirror images of each other. We determine precisely which identities imply associativity and which imply commutativity, providing counterexamples as appropriate. We apply our results to show that there are exactly eight varieties of quasigroups satisfying such identities, and determine all inclusion relations among them.
References:
[1] Akhtar R.: Generalized associativity in groupoids. Quasigroups Related Systems 24 (2016), 1–6. MR 3506153 | Zbl 1344.20083
[2] Belousov V.D.: Systems of quasigroups with generalized identities. Uspehi Mat. Nauk 20 (1965), no. 1 (121), 75–146. MR 0173724 | Zbl 0135.03503
[3] Krapež A.: Generalized linear functional equations on almost quasigroups. I. Equations with at most two variables. Aequationes Math. 61 (2001), no. 3, 255–280. DOI 10.1007/s000100050177 | MR 1833145 | Zbl 0993.39022
[4] Krapež A.: Quadratic level quasigroup equations with four variables. I. Publ. Inst. Math. (Beograd) (N.S.) 81 (95) (2007), 53–67. DOI 10.2298/PIM0795053K | MR 2401314 | Zbl 1229.39035
[5] Krapež A.: Quadratic level quasigroup equations with four variables. II. Publ. Inst. Math. (Beograd) (N.S.) 93 (107) (2013), 29–47. DOI 10.2298/PIM1307029K | MR 3089075 | Zbl 1299.20093
[6] McCune W.: Prover9, equational reasoning tool and Mace4, finite model builder. available at http://www.cs.unm.edu/$\sim$mccune/mace4/
[7] Niemenmaa M., Kepka T.: On a general associativity law in groupoids. Monatsh. Math. 113 (1992), 51–57. DOI 10.1007/BF01299305 | MR 1149060 | Zbl 0768.20032
[8] Phillips J.D., Vojtěchovský P.: The varieties of loops of Bol-Moufang type. Algebra Universalis 54 (2005), no. 3, 259–271. DOI 10.1007/s00012-005-1941-1 | MR 2219409 | Zbl 1102.20054
[9] Phillips J.D., Vojtěchovský P.: The varieties of quasigroups of Bol-Moufang type: An equational reasoning approach. J. Algebra 293 (2005), 17–33. DOI 10.1016/j.jalgebra.2005.07.011 | MR 2173964 | Zbl 1101.20046
[10] Pflugfelder H.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
Partner of
EuDML logo