Previous |  Up |  Next

Article

Keywords:
Bloch space; weighted Bergman space; Hardy space; essential norm; weighted composition operator
Summary:
In this paper, we give some estimates for the essential norm and a new characterization for the boundedness and compactness of weighted composition operators from weighted Bergman spaces and Hardy spaces to the Bloch space.
References:
[1] Castillo, R. E., Ramos-Fernández, J. C., Rojas, E. M.: A new essential norm estimate of composition operators from weighted Bloch space into $\mu$-Bloch spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 817278, 5 pages. DOI 10.1155/2013/817278 | MR 3111830 | Zbl 06281096
[2] Colonna, F.: New criteria for boundedness and compactness of weighted composition operators mapping into the Bloch space. Cent. Eur. J. Math. 11 (2013), 55-73. DOI 10.2478/s11533-012-0097-4 | MR 2988782 | Zbl 1279.47041
[3] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). MR 1397026 | Zbl 0873.47017
[4] Esmaeili, K., Lindström, M.: Weighted composition operators between Zygmund type spaces and their essential norms. Integral Equations Oper. Theory 75 (2013), 473-490. DOI 10.1007/s00020-013-2038-4 | MR 3032664 | Zbl 1306.47036
[5] Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E.: The essential norm of weighted composition operators on weighted Banach spaces of analytic functions. Integral Equations Oper. Theory 72 (2012), 151-157. DOI 10.1007/s00020-011-1919-7 | MR 2872471 | Zbl 1252.47026
[6] Hyvärinen, O., Lindström, M.: Estimates of essential norms of weighted composition operators between Bloch-type spaces. J. Math. Anal. Appl. 393 (2012), 38-44. DOI 10.1016/j.jmaa.2012.03.059 | MR 2921646 | Zbl 1267.47040
[7] Li, S., Stević, S.: Weighted composition operators from Bergman-type spaces into Bloch spaces. Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 371-385. DOI 10.1007/s12044-007-0032-y | MR 2352056 | Zbl 1130.47016
[8] Li, S., Stević, S.: Generalized composition operators on Zygmund spaces and Bloch type spaces. J. Math. Anal. Appl. 338 (2008), 1282-1295. DOI 10.1016/j.jmaa.2007.06.013 | MR 2386496 | Zbl 1135.47021
[9] Li, S., Stević, S.: Weighted composition operators from Zygmund spaces into Bloch spaces. Appl. Math. Comput. 206 (2008), 825-831. DOI 10.1016/j.amc.2008.10.006 | MR 2483058 | Zbl 1215.47022
[10] Liang, Y.-X., Zhou, Z.-H.: Essential norm of the product of differentiation and composition operators between Bloch-type spaces. Arch. Math. 100 (2013), 347-360. DOI 10.1007/s00013-013-0499-y | MR 3044119 | Zbl 1276.47041
[11] Lou, Z.: Composition operators on Bloch type spaces. Analysis Münich 23 (2003), 81-95. DOI 10.1524/anly.2003.23.1.81, | MR 1983976 | Zbl 1058.47024
[12] MacCluer, B. D., Zhao, R.: Essential norms of weighted composition operators between Bloch-type spaces. Rocky Mountain J. Math. 33 (2003), 1437-1458. DOI 10.1216/rmjm/1181075473 | MR 2052498 | Zbl 1061.30023
[13] Madigan, K., Matheson, A.: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347 (1995), 2679-2687. DOI 10.1090/S0002-9947-1995-1273508-X | MR 1273508 | Zbl 0826.47023
[14] Manhas, J. S., Zhao, R.: New estimates of essential norms of weighted composition operators between Bloch type spaces. J. Math. Anal. Appl. 389 (2012), 32-47. DOI 10.1016/j.jmaa.2011.11.039 | MR 2876478 | Zbl 1267.47042
[15] Montes-Rodríguez, A.: Weighted composition operators on weighted Banach spaces of analytic functions. J. Lond. Math. Soc., II. Ser. 61 (2000), 872-884. DOI 10.1112/S0024610700008875 | MR 1766111 | Zbl 0959.47016
[16] Ohno, S., Stroethoff, K., Zhao, R.: Weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33 (2003), 191-215. DOI 10.1216/rmjm/1181069993 | MR 1994487 | Zbl 1042.47018
[17] Stević, S.: Weighted differentiation composition operators from $H^\infty$ and Bloch spaces to $n$th weighted-type spaces on the unit disk. Appl. Math. Comput. 216 (2010), 3634-3641. DOI 10.1016/j.amc.2010.05.014 | MR 2661728 | Zbl 1195.30073
[18] Stević, S.: Characterizations of composition followed by differentiation between Bloch-type spaces. Appl. Math. Comput. 218 (2011), 4312-4316. DOI 10.1016/j.amc.2011.10.004 | MR 2862100 | Zbl 1244.30082
[19] Tjani, M.: Compact Composition Operators on Some Möbius Invariant Banach Spaces. PhD Thesis, Michigan State University, Michigan (1996). MR 2695395
[20] Tjani, M.: Compact composition operators on Besov spaces. Trans. Am. Math. Soc. 355 (2003), 4683-4698. DOI 10.1090/S0002-9947-03-03354-3 | MR 1990767 | Zbl 1045.47020
[21] Wulan, H., Zheng, D., Zhu, K.: Compact composition operators on BMOA and the Bloch space. Proc. Am. Math. Soc. 137 (2009), 3861-3868. DOI 10.1090/S0002-9939-09-09961-4 | MR 2529895 | Zbl 1194.47038
[22] Xiong, C.: Norm of composition operators on the Bloch space. Bull. Aust. Math. Soc. 70 (2004), 293-299. DOI 10.1017/S0004972700034511 | MR 2094297 | Zbl 1062.30038
[23] Yang, W.: Generalized weighted composition operators from the $F(p,q,s)$ space to the Bloch-type space. Appl. Math. Comput. 218 (2012), 4967-4972. DOI 10.1016/j.amc.2011.10.062 | MR 2870021 | Zbl 1244.30083
[24] Yang, W., Zhu, X.: Generalized weighted composition operators from area Nevanlinna spaces to Bloch-type spaces. Taiwanese J. Math. 16 (2012), 869-883. DOI 10.11650/twjm/1500406662 | MR 2917244 | Zbl 1268.47034
[25] Zhao, R.: Essential norms of composition operators between Bloch type spaces. Proc. Am. Math. Soc. 138 (2010), 2537-2546. DOI 10.1090/S0002-9939-10-10285-8 | MR 2607883 | Zbl 1190.47028
[26] Zhu, K.: Operator Theory in Function Spaces. Pure and Applied Mathematics 139, Marcel Dekker, New York (1990). MR 1074007 | Zbl 0706.47019
[27] Zhu, X.: Generalized weighted composition operators on Bloch-type spaces. J. Inequal. Appl. (electronic only) 2015 (2015), Paper No. 59, 9 pages. DOI 10.1186/s13660-015-0580-0 | MR 3313862 | Zbl 1309.47027
Partner of
EuDML logo