[3] Cameron, R. H., Storvick, D. A.:
Some Banach algebras of analytic Feynman integrable functionals. Analytic Functions Proc. Conf. Kozubnik 1979, Lect. Notes Math. 798, Springer, Berlin (1980), 18-67.
DOI 10.1007/bfb0097256 |
MR 0577446 |
Zbl 0439.28007
[4] Cameron, R. H., Storvick, D. A.:
Change of scale formulas for Wiener integral. Functional Integration with Emphasis on the Feynman Integral Proc. Workshop Sherbrooke 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. (1988), 105-115.
MR 0950411 |
Zbl 0653.28005
[8] Cho, D. H.:
Analogues of conditional Wiener integrals with drift and initial distribution on a function space. Abstr. Appl. Anal. (2014), Article ID 916423, 12 pages.
DOI 10.1155/2014/916423 |
MR 3226236
[14] Kim, B. S.:
Relationship between the Wiener integral and the analytic Feynman integral of cylinder function. J. Chungcheong Math. Soc. 27 (2014), 249-260.
DOI 10.14403/jcms.2014.27.2.249
[16] Pierce, I. D.:
On a Family of Generalized Wiener Spaces and Applications. Ph.D. Thesis, The University of Nebraska, Lincoln (2011).
MR 2890101
[18] Yoo, I., Chang, K. S., Cho, D. H., Kim, B. S., Song, T. S.:
A change of scale formula for conditional Wiener integrals on classical Wiener space. J. Korean Math. Soc. 44 (2007), 1025-1050.
DOI 10.4134/JKMS.2007.44.4.1025 |
MR 2334543 |
Zbl 1129.28014
[20] Yoo, I., Skoug, D.:
A change of scale formula for Wiener integrals on abstract Wiener spaces II. J. Korean Math. Soc. 31 (1994), 115-129.
MR 1269456 |
Zbl 0802.28009