[3] Buell, D. A.:
Computer computation of class groups of quadratic number fields. Congr. Numerantium 22 Conf. Proc. Numerical Mathematics and Computing, Winnipeg 1978 (1979), 3-12 McCarthy et al.
MR 0541910 |
Zbl 0424.12001
[5] Deng, Y., Zhang, W.:
On the odd prime solutions of the Diophantine equation $x^y+y^x=z^z$. Abstr. Appl. Anal. 2014 (2014), Art. ID 186416, 4 pages.
DOI 10.1155/2014/186416 |
MR 3240527
[8] Liu, Y. N., Guo, X. Y.:
A Diophantine equation and its integer solutions. Acta Math. Sin., Chin. Ser. 53 (2010), 853-856.
MR 2722920 |
Zbl 1240.11066
[10] Mollin, R. A., Williams, H. C.:
Computation of the class number of a real quadratic field. Util. Math. 41 (1992), 259-308.
MR 1162532 |
Zbl 0757.11036
[11] Mordell, L. J.:
Diophantine Equations. Pure and Applied Mathematics 30, Academic Press, London (1969).
MR 0249355 |
Zbl 0188.34503
[12] Poorten, A. J. van der, Riele, H. J. J. te, Williams, H. C.:
Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100000000000. Math. Comput. 70 (2001), 70 1311-1328 corrig. ibid. 72 521-523 2003.
DOI 10.1090/S0025-5718-00-01234-5 |
MR 1933835 |
Zbl 0987.11065
[13] Wu, H.:
The application of BHV theorem to the Diophantine equation $x^y+y^x=z^z$. Acta Math. Sin., Chin. Ser. 58 (2015), 679-684.
MR 3443204 |
Zbl 06610974
[15] Zhang, Z., Luo, J., Yuan, P.:
On the Diophantine equation $x^y+y^x=z^z$. Chin. Ann. Math., Ser. A (2013), 34A 279-284.
MR 3114411 |
Zbl 1299.11037