[1] Benci, V., Cerami, G.:
Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{(N+2)/(N-2)}$ in $\mathbb{R}^N$. J. Funct. Anal., 88, 1990, 91-117,
MR 1033915
[2] Benci, V., D'Avenia, P., Fortunato, D., Pisani, L.:
Solitons in several space dimensions: Derrick's problem and infinitely many solutions. Arch. Ration. Mech. Anal., 154, 4, 2000, 297-324,
DOI 10.1007/s002050000101 |
MR 1785469 |
Zbl 0973.35161
[3] Benci, V., Micheletti, A. M., Visetti, D.:
An eigenvalue problem for a quasilinear elliptic field equation. J. Differ. Equ., 184, 2, 2002, 299-320,
DOI 10.1006/jdeq.2001.4155 |
MR 1929880 |
Zbl 1157.35348
[4] Candito, P., Marano, S. A., Perera, K.:
On a class of critical $(p, q)$-Laplacian problems. Nonlinear Differ. Equ. Appl., 22, 2015, 1959-1972,
DOI 10.1007/s00030-015-0353-y |
MR 3415031 |
Zbl 1328.35053
[5] Cherfils, L., Iĺyasov, Y.:
On the stationary solutions of generalized reaction diffusion equations with $p\&q$-Laplacian. Commun. Pure Appl. Anal., 4, 1, 2005, 9-22,
MR 2126276 |
Zbl 1210.35090
[6] Derrick, G. H.:
Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys., 5, 1964, 1252-1254,
DOI 10.1063/1.1704233 |
MR 0174304
[8] Figueiredo, G. M.:
Existence of positive solutions for a class of $p\&q$ elliptic problems with critical growth on $\mathbb{R}^n$. J. Math. Anal. Appl., 378, 2011, 507-518,
DOI 10.1016/j.jmaa.2011.02.017 |
MR 2773261
[14] Li, G. B., Liang, X.:
The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$-Laplacian type on $\mathbb{R}^N$. Nonlinear Anal., 71, 2009, 2316-2334,
DOI 10.1016/j.na.2009.01.066 |
MR 2524439
[15] Li, Y., Ruf, B., Guo, Q., Niu, P.:
Quasilinear elliptic problems with combined critical Sobolev-Hardy terms. Annali di Matematica, 192, 2013, 93-113,
DOI 10.1007/s10231-011-0213-2 |
MR 3011325 |
Zbl 1292.35104
[16] López, R.:
Constant Mean Curvature Surfaces with Boundary. 2013, Springer Monographs in Mathematics,
MR 3098467 |
Zbl 1329.53099
[18] Shahrokhi-Dehkordi, M. S., Taheri, A.:
Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps. Journal of Convex Analysis, 17, 1, 2010, 69-79,
MR 2642716 |
Zbl 1186.49033