Previous |  Up |  Next

Article

Keywords:
Quasi-linear elliptic problem; $(p,q)$-Laplacian operator; Critical Sobolev-Hardy exponent; Starshaped domain.
Summary:
Let $\Omega \subset \mathbb{R}^n$ be a bounded starshaped domain and consider the $(p,q)$-Laplacian problem \begin{align*} -\Delta_p u-\Delta_q u = \lambda ({\bf x} )\lvert u\rvert^{p^\star -2} u+\mu |u|^{r-2} u \end{align*} where $\mu$ is a positive parameter, $1 < q \le p < n$, $r\ge p^{\star}$ and $p^{\star}:=\frac{np}{n-p}$ is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the $(p, q)$-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
References:
[1] Benci, V., Cerami, G.: Existence of positive solutions of the equation $-\Delta u+a(x)u=u^{(N+2)/(N-2)}$ in $\mathbb{R}^N$. J. Funct. Anal., 88, 1990, 91-117, MR 1033915
[2] Benci, V., D'Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick's problem and infinitely many solutions. Arch. Ration. Mech. Anal., 154, 4, 2000, 297-324, DOI 10.1007/s002050000101 | MR 1785469 | Zbl 0973.35161
[3] Benci, V., Micheletti, A. M., Visetti, D.: An eigenvalue problem for a quasilinear elliptic field equation. J. Differ. Equ., 184, 2, 2002, 299-320, DOI 10.1006/jdeq.2001.4155 | MR 1929880 | Zbl 1157.35348
[4] Candito, P., Marano, S. A., Perera, K.: On a class of critical $(p, q)$-Laplacian problems. Nonlinear Differ. Equ. Appl., 22, 2015, 1959-1972, DOI 10.1007/s00030-015-0353-y | MR 3415031 | Zbl 1328.35053
[5] Cherfils, L., Iĺyasov, Y.: On the stationary solutions of generalized reaction diffusion equations with $p\&q$-Laplacian. Commun. Pure Appl. Anal., 4, 1, 2005, 9-22, MR 2126276 | Zbl 1210.35090
[6] Derrick, G. H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys., 5, 1964, 1252-1254, DOI 10.1063/1.1704233 | MR 0174304
[7] Fife, P. C.: Mathematical aspects of reacting and diffusing systems. Lecture Notes in Biomathematics, 28, 1979, Springer, Berlin, DOI 10.1007/978-3-642-93111-6 | MR 0527914 | Zbl 0403.92004
[8] Figueiredo, G. M.: Existence of positive solutions for a class of $p\&q$ elliptic problems with critical growth on $\mathbb{R}^n$. J. Math. Anal. Appl., 378, 2011, 507-518, DOI 10.1016/j.jmaa.2011.02.017 | MR 2773261
[9] Filippucci, R., Pucci, P., Robert, F.: On a $p$-Laplace equation with multiple critical nonlinearitie. J. Math. Pures Appl, 91, 2009, 156-177, DOI 10.1016/j.matpur.2008.09.008 | MR 2498753
[10] Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Amer. Math. Soc., 352, 2000, 5703-5743, DOI 10.1090/S0002-9947-00-02560-5 | MR 1695021 | Zbl 0956.35056
[11] Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal., 13, 1989, 879-902, DOI 10.1016/0362-546X(89)90020-5 | MR 1009077 | Zbl 0714.35032
[12] Guo, Q., Han, J., Niu, P.: Existence and multiplicity of solutions for critical elliptic equations with multi-polar potentials in symmetric domains. Nonlinear Analysis, 75, 2012, 5765-5786, DOI 10.1016/j.na.2012.05.021 | MR 2948296 | Zbl 1250.35083
[13] Kang, D.: Solutions of the quasilinear elliptic problem with a critical Sobolev-Hardy exponent and a Hardy-type term. J. Math. Anal. Appl., 341, 2008, 764-782, DOI 10.1016/j.jmaa.2007.10.058 | MR 2398246 | Zbl 1137.35378
[14] Li, G. B., Liang, X.: The existence of nontrivial solutions to nonlinear elliptic equation of $p-q$-Laplacian type on $\mathbb{R}^N$. Nonlinear Anal., 71, 2009, 2316-2334, DOI 10.1016/j.na.2009.01.066 | MR 2524439
[15] Li, Y., Ruf, B., Guo, Q., Niu, P.: Quasilinear elliptic problems with combined critical Sobolev-Hardy terms. Annali di Matematica, 192, 2013, 93-113, DOI 10.1007/s10231-011-0213-2 | MR 3011325 | Zbl 1292.35104
[16] López, R.: Constant Mean Curvature Surfaces with Boundary. 2013, Springer Monographs in Mathematics, MR 3098467 | Zbl 1329.53099
[17] Marano, S. A., Papageorgiou, N. S.: Constant-sign and nodal solutions of coercive $(p,q)$-Laplacian problems. Nonlinear Anal., 77, 2013, 118-129, DOI 10.1016/j.na.2012.09.007 | MR 2988766 | Zbl 1260.35036
[18] Shahrokhi-Dehkordi, M. S., Taheri, A.: Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps. Journal of Convex Analysis, 17, 1, 2010, 69-79, MR 2642716 | Zbl 1186.49033
[19] Sun, M.: Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance. J. Math. Anal. Appl., 386, 2, 2012, 661-668, DOI 10.1016/j.jmaa.2011.08.030 | MR 2834776 | Zbl 1229.35089
[20] Wilhelmsson, H.: Explosive instabilities of reaction-diffusion equations. Phys. Rev. A, 36, 2, 1987, 965-966, DOI 10.1103/PhysRevA.36.965 | MR 0901723
[21] Yin, H., Yang, Z.: A class of $p-q$-Laplacian type equation with concave-convex nonlinearities in bounded domain. J. Math. Anal. Appl., 382, 2011, 843-855, DOI 10.1016/j.jmaa.2011.04.090 | MR 2810836 | Zbl 1222.35083
Partner of
EuDML logo