Previous |  Up |  Next

Article

Keywords:
Degenerate semilinear elliptic equations; weighted Sobolev Spaces.
Summary:
The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.
References:
[1] Cavalheiro, A. C.: An approximation theorem for solutions of degenerate elliptic equations. Proc. Edinb. Math. Soc., 45, 2002, 363-389, doi: 10.1017/S0013091500000079. DOI 10.1017/S0013091500000079 | MR 1912646 | Zbl 1195.35021
[2] Cavalheiro, A. C.: Existence of solutions in weighted Sobolev spaces for some degenerate semilinear elliptic equations. Appl. Math. Lett., 17, 2004, 387-391, doi:10.1016/S0893-9659(04)00043-6. DOI 10.1016/S0893-9659(04)90079-1 | MR 2045742 | Zbl 1133.35351
[3] Cavalheiro, A. C.: Existence results for the Dirichlet problem of some degenerate nonlinear elliptic equations. J. Appl. Anal., 20, 2, 2014, 145-154, doi:10.1515/jaa-2014-0016. DOI 10.1515/jaa-2014-0016 | MR 3284721 | Zbl 1305.35076
[4] Cavalheiro, A. C.: Uniqueness of solutions for some degenerate nonlinear elliptic equations. Appl. Math. (Warsaw), 41, 1, 2014, 93-106, DOI 10.4064/am41-1-8 | MR 3241062 | Zbl 1324.35039
[5] Cavalheiro, A. C.: Existence and uniqueness of solutions for the Navier problems with degenerate nonlinear elliptic equations. Note Mat., 25, 2, 2015, 1-16, MR 3483422
[6] Fabes, E., Kenig, C., Serapioni, R.: The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 7, 1982, 77-116, doi:10.1080/03605308208820218. DOI 10.1080/03605308208820218 | MR 0643158 | Zbl 0498.35042
[7] Fernandes, J. C., Franchi, B.: Existence and properties of the Green function for a class of degenerate parabolic equations. Rev. Mat. Iberoam., 12, 1996, 491-525, DOI 10.4171/RMI/206 | MR 1402676 | Zbl 0859.35062
[8] Garcia-Cuerva, J., Francia, J. L. Rubio de: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, 116, 1985, MR 0807149
[9] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. 1993, Oxford Math. Monographs, Clarendon Press, MR 1207810 | Zbl 0780.31001
[10] Kufner, A.: Weighted Sobolev Spaces. 1985, John Wiley & Sons, New York, MR 0802206 | Zbl 0579.35021
[11] Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 1972, 207-226, DOI 10.1090/S0002-9947-1972-0293384-6 | MR 0293384 | Zbl 0236.26016
[12] Torchinsky, A.: Real-Variable Methods in Harmonic Analysis. 1986, Academic Press, San Diego, MR 0869816 | Zbl 0621.42001
[13] Turesson, B. O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. 1736, 2000, Springer-Verlag, Lecture Notes in Math.. DOI 10.1007/BFb0103912 | MR 1774162 | Zbl 0949.31006
Partner of
EuDML logo