[3] Davenport, H.:
Simultaneous Diophantine approximation. Proc. London Math. Soc., 3, 2, 1952, 406-416,
MR 0054657 |
Zbl 0048.03204
[7] Mullender, P.:
Lattice points in non-convex regions I. Proc. Kon. Ned. Akad. Wet., 51, 1948, 874-884,
MR 0027301 |
Zbl 0031.11301
[9] Niven, I., Zuckerman, H.S.:
Einführung in die Zahlentheorie. 1975, Bibliograph. Inst., Mannheim,
MR 0392779
[11] Nowak, W.G.:
The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$. Math. Pannonica, 10, 1999, 111-122,
MR 1678107
[12] Nowak, W.G.:
Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem. T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland,
MR 3526920
[13] Spohn, W.G.:
Midpoint regions and simultaneous Diophantine approximation. Dissertation, Ann Arbor, Michigan, University Microfilms, Inc., Order No. 62-4343, (1962).
MR 2613496
[14] Spohn, W.G.:
Blichfeldt's theorem and simultaneous Diophantine approximation. Amer. J. Math., 90, 1968, 885-894,
DOI 10.2307/2373489 |
MR 0231794