Previous |  Up |  Next

Article

Keywords:
Geometry of numbers; Diophantine approximation; approximation constants; critical determinant
Summary:
In a classic paper, W.G. Spohn established the to-date sharpest estimates from below for the simultaneous Diophantine approximation constants for three and more real numbers. As a by-result of his method which used Blichfeldt's Theorem and the calculus of variations, he derived a bound for the critical determinant of the star body $$ \lvert x_1\rvert ({\lvert x_1\rvert^3+\lvert x_2\rvert^3+\lvert x_3\rvert^3})\le 1\,.$$ In this little note, after a brief exposition of the basics of the geometry of numbers and its significance for Diophantine approximation, this latter result is improved and extended to the star body $$ \lvert x_1\rvert (\lvert x_1\rvert^3+(x_2^2+x_3^2)^{3/2})\le 1\,. $$
References:
[1] Blichfeldt, H.: A new principle in the geometry of numbers, with some applications. Trans. Amer. Math. Soc., 15, 1914, 227-235, DOI 10.1090/S0002-9947-1914-1500976-6 | MR 1500976
[2] Cassels, J.W.S.: Simultaneous Diophantine approximation. J. London Math. Soc., 30, 1955, 119-121, DOI 10.1112/jlms/s1-30.1.119 | MR 0066432 | Zbl 0065.28302
[3] Davenport, H.: Simultaneous Diophantine approximation. Proc. London Math. Soc., 3, 2, 1952, 406-416, MR 0054657 | Zbl 0048.03204
[4] Davenport, H.: On a theorem of Furtwängler. J. London Math. Soc., 30, 1955, 185-195, MR 0067943 | Zbl 0064.04501
[5] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers. 1987, North Holland, Amsterdam, MR 0893813 | Zbl 0611.10017
[6] Mack, J.M.: Simultaneous Diophantine approximation. J. Austral. Math. Soc., Ser. A, 24, 1977, 266-285, DOI 10.1017/S1446788700020292 | MR 0472719 | Zbl 0377.10020
[7] Mullender, P.: Lattice points in non-convex regions I. Proc. Kon. Ned. Akad. Wet., 51, 1948, 874-884, MR 0027301 | Zbl 0031.11301
[8] Mullender, P.: Simultaneous approximation. Ann. Math., 52, 1950, 417-426, DOI 10.2307/1969477 | MR 0037326 | Zbl 0037.17102
[9] Niven, I., Zuckerman, H.S.: Einführung in die Zahlentheorie. 1975, Bibliograph. Inst., Mannheim, MR 0392779
[10] Nowak, W.G.: A note on simultaneous Diophantine approximation. Manuscr. math., 36, 1981, 33-46, DOI 10.1007/BF01174811 | MR 0637853 | Zbl 0455.10020
[11] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$. Math. Pannonica, 10, 1999, 111-122, MR 1678107
[12] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem. T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, MR 3526920
[13] Spohn, W.G.: Midpoint regions and simultaneous Diophantine approximation. Dissertation, Ann Arbor, Michigan, University Microfilms, Inc., Order No. 62-4343, (1962). MR 2613496
[14] Spohn, W.G.: Blichfeldt's theorem and simultaneous Diophantine approximation. Amer. J. Math., 90, 1968, 885-894, DOI 10.2307/2373489 | MR 0231794
Partner of
EuDML logo