Previous |  Up |  Next

Article

Keywords:
Liouville numbers; Mahler's question; power series
Summary:
In this note, we prove that there is no transcendental entire function $f(z)\in \mathbb{Q} [[z]]$ such that $f(\mathbb{Q} )\subseteq \mathbb{Q}$ and $\mathop{\rm den} f(p/q)=F(q)$, for all sufficiently large $q$, where $F(z)\in \mathbb{Z} [z]$.
References:
[1] Mahler, K.: Arithmetic properties of lacunary power series with integral coefficients. J. Austral. Math. Soc., 5, 1965, 56-64, DOI 10.1017/S1446788700025866 | MR 0190094 | Zbl 0148.27703
[2] Mahler, K.: Some suggestions for further research. Bull. Austral. Math. Soc., 29, 1984, 101-108, DOI 10.1017/S0004972700021316 | MR 0732177 | Zbl 0517.10001
[3] Maillet, E.: Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions. 1906, Gauthier-Villars, Paris,
[4] Marques, D., Moreira, C.G.: A variant of a question proposed by K. Mahler concerning Liouville numbers. Bull. Austral. Math. Soc., 91, 2015, 29-33, DOI 10.1017/S0004972714000471 | MR 3294255 | Zbl 1308.11069
[5] Marques, D., Ramirez, J.: On transcendental analytic functions mapping an uncountable class of $U$-numbers into Liouville numbers. Proc. Japan Acad. Ser. A Math. Sci., 91, 2015, 25-28, DOI 10.3792/pjaa.91.25 | MR 3310967 | Zbl 1311.11067
[6] Marques, D., Ramirez, J., Silva, E.: A note on lacunary power series with rational coefficients. Bull. Austral. Math. Soc., 93, 2015, 1-3, MR 3491477
[7] Marques, D., Schleischitz, J.: On a problem posed by Mahler. J. Austral. Math. Soc., 100, 2016, 86-107, DOI 10.1017/S1446788715000415 | MR 3436773 | Zbl 1335.11053
Partner of
EuDML logo