Previous |  Up |  Next

Article

Keywords:
nonlinear system; hybrid output feedback; semiglobal output stabilization; local performance
Summary:
For a large class of nonlinear control systems, the main drawback of a semiglobal stabilizing output feedback controllers $(\mathcal{U}_R)_{R>0}$ with increasing regions of attraction $(\Omega_R)_{R>0}$ is that, when the region of attraction $\Omega_R$ is large, the convergence of solutions of the closed-loop system to the origin becomes slow. To improve the performance of a semiglobal controller, we look for a new feedback control law that preserves the semiglobal stability of the nonlinear system under consideration and that is equal to some "fast" controller $\mathcal{U}_{R_0}$ on a neighborhood of the origin. Under an input-output-to-state stability (IOSS) assumption, we propose a new semiglobal stabilizing hybrid feedback controller that unifies a "slow" controller that has a large region of attraction with a "fast" controller having a small region of attraction. This unification is inspired from the elegant hybrid unification of a local controller with a global one given in [21]. Moreover, this unification is different from the recent result [24], since in the cited paper the objective is just the stabilization; whereas in our study, the objective is the stabilization with high performance. Finally, we illustrate our main result by means of two numerical examples.
References:
[1] Ahmed-Ali, T., Assche, V. Van, Massieu, J., Dorleans, P.: Continuous-discrete observer for state affine systems with sampled and delayed measurements. IEEE Trans. Automat. Control 58 (2013), 4, 1085-1091. DOI 10.1109/tac.2012.2225555 | MR 3038816
[2] Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements. System Control Lett. 62 (2013), 7, 539-549. DOI 10.1016/j.sysconle.2013.03.008 | MR 3068156 | Zbl 1277.93051
[3] Andrieu, V., Praly, L.: A unifying point of view on output feedback designs for global asymptotic stabilization. Automatica 45 (2009), 8, 1789-1798. DOI 10.1016/j.automatica.2009.04.015 | MR 2879499 | Zbl 1185.93114
[4] Efimov, D. V.: Uniting global and local controllers under acting disturbances. Automatica 42 (2006), 489-495. DOI 10.1016/j.automatica.2005.11.003 | MR 2195253 | Zbl 1123.93082
[5] Efimov, D. V., Loria, A., Panteley, E.: Robust output stabilization: improving performance via supervisory control. Int. J. Robust Nonlinear Control 21 (2011), 10, 1219-1236. DOI 10.1002/rnc.1660 | MR 2839847 | Zbl 1225.93095
[6] Freeman, R., Kokotovic, P.: Robust Nonlinear Control Design: State-Space and Lyapunov Techniques. Birkhauser, Boston 1996. DOI 10.1007/978-0-8176-4759-9 | MR 1396307 | Zbl 1130.93005
[7] Gauthier, J., Hammouri, H., Othman, S.: A simple observer for nonlinear systems: Application to bioreactor. IEEE Trans. Automat. Control 37 (1992), 875-880. DOI 10.1109/9.256352 | MR 1164571
[8] Goebel, R., Sanfelice, R. G., Teel, A. R.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press 2012. MR 2918932 | Zbl 1241.93002
[9] Geobel, R., Teel, A. R.: Solutions to hybrid inclusions via set and graphical convergence with stability theory applications. Automatica 42 (2006), 573-587. DOI 10.1016/j.automatica.2005.12.019 | MR 2200351
[10] Isidori, A.: Nonlinear Control Systems. (Third edition). Springer Verlag, London 1995. DOI 10.1007/978-1-84628-615-5 | MR 1410988
[11] Jiang, Z. P.: Discussion on the paper "Global asymptotic output feedback stabilization of feedforward systems", by F. Mazenc and J. C. Vivalda. Europ. J. Control 8 (2002), 6, 531-534. DOI 10.3166/ejc.8.531-534
[12] Jouan, P., Gauthier, J.: Finite singularities of nonlinear systems, output stabilization, observability and observers. J. Dynamical Control Systems 2 (1996), 2, 255-288. DOI 10.1007/bf02259528 | MR 1388697 | Zbl 0944.93026
[13] Khalil, H., Esfandiari, F.: Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans. Automat. Control 38 (1993), 2, 1412-1415. DOI 10.1109/9.237658 | MR 1240837 | Zbl 0787.93079
[14] Krichman, M., Sontag, E., Wang, Y.: Input-output-to-state stability. SIAM J. Control Optim. 39 (2001), 1874-1928. DOI 10.1137/s0363012999365352 | MR 1825868 | Zbl 1005.93044
[15] Marino, R., Tomei, P.: A class of globally output feedback stabilizable nonlinear nonminimum phase systems. IEEE Trans. Automat. Control 50 (2005), 2097-2101. DOI 10.1109/tac.2005.858652 | MR 2186285
[16] Mazenc, F., Vivalda, J. C.: Global asymptotic output feedback stabilization of feedforward systems. Europ. J. Control 8 (2002), 6, 519-530. DOI 10.3166/ejc.8.519-530 | Zbl 1293.93613
[17] Pan, Z., Ezal, K., Krener, A. J., Kokotovic, P. V.: Backstepping design with local optimality matching. IEEE Trans. Automat. Control 46 (2001), 7, 1014-1027. DOI 10.1109/9.935055 | MR 1842136 | Zbl 1007.93025
[18] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate. IEEE Trans. Automat. Control 48 (2003), 12, 1103-1108. DOI 10.1109/tac.2003.812819 | MR 1986287
[19] Praly, L., Teel, A. R.: Tools for semiglobal stabilization by partial state and output feedback. SIAM J. Control Optim. 33 (1995), 5, 1443-1488. DOI 10.1137/s0363012992241430 | MR 1348117 | Zbl 0843.93057
[20] Prieur, C., Goebel, R., Teel, A. R.: Hybrid feedback control and robust stabilization of nonlinear systems. IEEE Trans. Automat. Control 52 (2007), 11, 2103-2117. DOI 10.1109/tac.2007.908320 | MR 2361804
[21] Prieur, C., Teel, A. R.: Uniting local and global output feedback controllers. IEEE Trans. Automat. Control 56 (2011), 1636-1649. DOI 10.1109/tac.2010.2091436 | MR 2848274
[22] Qian, C., Lin, W.: Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans. Automat. Control 47 (2002), 10, 1710-1715. DOI 10.1109/tac.2002.803542 | MR 1929946
[23] Sanfelice, R. G., Goebel, R.: Generalized solutions to hybrid dynamical systems. ESAIM: Control, Optimisation and Calculus of Variations 14 (2008), 699-724. DOI 10.1051/cocv:2008008 | MR 2451791 | Zbl 1147.93032
[24] Sanfelice, R. G., Prieur, C.: Robust supervisory control for uniting two output-feedback hybrid controllers with different objectives. Automatica 49 (2013), 1958-1969. DOI 10.1016/j.automatica.2013.03.009 | MR 3063051
[25] Shen, Y., Zhang, D., Huang, Y., Liu, Y.: Global $\mathcal K$-exponential stabilization of a class of nonlinear networked control systems. Int. J. Systems Sci. 47 (2016), 15, 3545-3553. DOI 10.1080/00207721.2015.1091899 | MR 3511491
[26] Shen, Y., Zhang, D., Xia, X.: Continuous output feedback stabilization for nonlinear systems based on sampled and delayed output measurements. Int. J. Robust. Nonlinear Control 26 (2016), 14, 3075-3087. DOI 10.1080/00207721.2015.1091899 | MR 3537171 | Zbl 1346.93320
[27] Sontag, E. D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. (Second edition). Springer, New York 1998. DOI 10.1007/978-1-4612-0577-7 | MR 1640001
[28] Sontag, E. D., Wang, Y.: Output-to-state stability and detectability of nonlinear systems. Systems Control Lett. 29 (1997), 5, 279-290. DOI 10.1016/s0167-6911(97)90013-x | MR 1432653 | Zbl 0901.93062
[29] Tarbouriech, S., Garcia, G., Jr., J. M. G. da Silva, Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators. Springer-Verlag, London 2011. DOI 10.1007/978-0-85729-941-3 | MR 3024786 | Zbl 1279.93004
[30] Teel, A. R., Kapoor, N.: Uniting global and local controllers. In: European Control Conference, Brussels 1997.
Partner of
EuDML logo