Previous |  Up |  Next

Article

Keywords:
nonlinear time-varying systems; asymptotic stability; stabilization
Summary:
In this paper, we establish some new sufficient conditions for uniform global asymptotic stability for certain classes of nonlinear systems. Lyapunov approach is applied to study exponential stability and stabilization of time-varying systems. Sufficient conditions are obtained based on new nonlinear differential inequalities. Moreover, some examples are treated and an application to control systems is given.
References:
[1] Aeyels, O., Penteman, P.: A new asymptotic stability cretirion for non linear time varying differential equations. IEEE Trans. Automat. Control 43 (1998), 968-971. DOI 10.1109/9.701102 | MR 1633504
[2] Bay, N. S., Phat, V. N.: Stability of nonlinear difference time varying systems with delays. Vietnam J. Math. 4 (1999), 129-136.
[3] BenAbdallah, A., Ellouze, I., Hammami, M. A.: Practical stability of nonlinear time-varying cascade systems. J. Dynamical Control Systems 15 (2009), 1, 45-62. DOI 10.1007/s10883-008-9057-5 | MR 2475660 | Zbl 1203.93160
[4] Corless, M: Guaranteed rates of exponential convergence for uncertain systems. J. Optim. Theory Appl. 64 (1990), 3, 481-494. DOI 10.1007/bf00939420 | MR 1043736
[5] Corless, M., Leitmann, G.: Controller design for uncertain systems via Lyapunov functions. In: Proc. 1988 American Control Conference, Atlanta 1988.
[6] Garofalo, F., Leitmann, G.: Guaranteeing ultimate boundedness and exponential rate of convergence for a class of nominally linear uncertain systems. J. Dynamic Systems, Measurement, and Control 111 (1989), 584-588. DOI 10.1115/1.3153097 | Zbl 0714.93013
[7] Hahn, W.: Stability of Motion. Springer, New York 1967. DOI 10.1007/978-3-642-50085-5 | MR 0223668 | Zbl 0189.38503
[8] A.Hammami, M.: On the stability of nonlinear control systems with uncertainty. J. Dynamical Control Systems 7 (2001), 2, 171-179. DOI 10.1023/a:1013099004015 | MR 1830490
[9] Hammi, M., Hammami, M. A.: Non-linear integral inequalities and applications to asymptotic stability. IMA J. Math. Control Inform. 32 (2015), 4, 717-736. DOI 10.1093/imamci/dnu016 | MR 3436122 | Zbl 1328.93214
[10] Hammi, M., A.Hammami, M.: Gronwall-Bellman type integral inequalities and applications to global uniform asymptotic stability. CUBO Math. J. 17 (2015), 3, 53-70. DOI 10.4067/s0719-06462015000300004 | MR 3445845
[11] Khalil, H.: Nonlinear Systems. Prentice Hall 2002. Zbl 1194.93083
[12] Lakshmikantham, V., Leela, S., Martynuk, A. A.: Practical Stability of Nonlinear Systems. World Scientific Publishing Co. Pte. Ltd. 1990. DOI 10.1142/1192 | MR 1089428
[13] Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control. 50 (2005), 6, 841-846. DOI 10.1109/tac.2005.849233 | MR 2142000
[14] Liu, K., Zhu, H., Lü, J.: Bridging the gap between transmission noise and sampled data for robust consensus of multi-agent systems. IEEE Trans. Circuits and Systems I 62 (2015), 7, 1836-1844. DOI 10.1109/tcsi.2015.2434101 | MR 3361623
[15] Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems. Science China Technol. Sci. 59 (2016), 1, 22-32. DOI 10.1007/s11431-015-5989-7
[16] Li, Y., Wu, X., Lu, J., Lü, J.: Synchronizability of duplex networks. IEEE Trans. Circuits and Systems II - Express Briefs 63 (2016), 2, 206-210. DOI 10.1109/tcsii.2015.2468924
[17] Lin, W., Pongvuthithum, R.: Global satbilization of cascade system by ${C}^0$ partial-state feedback. IEEE Trans. Automat. Control 47 (2002), 1356-1362. DOI 10.1109/tac.2002.800743 | MR 1917450
[18] Pantely, E., Loria, A.: On global uniform asymptotic stability of nonlinear time-varying systems in cascade. System Control Lett. 33 (1998), 131-138. DOI 10.1016/s0167-6911(97)00119-9 | MR 1607815
[19] Pham, Q. C., Tabareau, N., Slotine, J. J. E.: A contraction theory appoach to stochastic incremental stability. IEEE Trans. Automat. Control 54 (2009), 4, 816-820. DOI 10.1109/tac.2008.2009619 | MR 2514815
[20] Phat, V. N.: Global stabilization for linear continuous time-varying systems. Appl. Math. Comput. 175 (2006), 1730-1743. DOI 10.1016/j.amc.2005.09.017 | MR 2225620 | Zbl 1131.93044
[21] Martynyuk, A. A.: Stability in the models of real world phenomena. Nonlinear Dyn. Syst. Theory 11 (2011), 1, 7-52. MR 2798814 | Zbl 1283.70006
[22] Mu, X., Cheng, D.: On stability and stabilization of time-varying nonlinear control systems. Asian J. Control 7 (2005), 3, 244-255. DOI 10.1111/j.1934-6093.2005.tb00234.x
[23] Pata, V.: Uniform estimates of Gronwall types. J. Math. Anal. Appl. xx (2011), 264-270. DOI 10.1016/j.jmaa.2010.07.006 | MR 2684477
[24] Zubov, V. I.: Methods of A. M. Lyapunov and Their Applications. P. Noordhoff, Groningen, 1964. MR 0179428
Partner of
EuDML logo