[1] Aeyels, O., Penteman, P.:
A new asymptotic stability cretirion for non linear time varying differential equations. IEEE Trans. Automat. Control 43 (1998), 968-971.
DOI 10.1109/9.701102 |
MR 1633504
[2] Bay, N. S., Phat, V. N.: Stability of nonlinear difference time varying systems with delays. Vietnam J. Math. 4 (1999), 129-136.
[4] Corless, M:
Guaranteed rates of exponential convergence for uncertain systems. J. Optim. Theory Appl. 64 (1990), 3, 481-494.
DOI 10.1007/bf00939420 |
MR 1043736
[5] Corless, M., Leitmann, G.: Controller design for uncertain systems via Lyapunov functions. In: Proc. 1988 American Control Conference, Atlanta 1988.
[6] Garofalo, F., Leitmann, G.:
Guaranteeing ultimate boundedness and exponential rate of convergence for a class of nominally linear uncertain systems. J. Dynamic Systems, Measurement, and Control 111 (1989), 584-588.
DOI 10.1115/1.3153097 |
Zbl 0714.93013
[11] Khalil, H.:
Nonlinear Systems. Prentice Hall 2002.
Zbl 1194.93083
[12] Lakshmikantham, V., Leela, S., Martynuk, A. A.:
Practical Stability of Nonlinear Systems. World Scientific Publishing Co. Pte. Ltd. 1990.
DOI 10.1142/1192 |
MR 1089428
[13] Lü, J., Chen, G.:
A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control. 50 (2005), 6, 841-846.
DOI 10.1109/tac.2005.849233 |
MR 2142000
[14] Liu, K., Zhu, H., Lü, J.:
Bridging the gap between transmission noise and sampled data for robust consensus of multi-agent systems. IEEE Trans. Circuits and Systems I 62 (2015), 7, 1836-1844.
DOI 10.1109/tcsi.2015.2434101 |
MR 3361623
[15] Liu, K., Wu, L., Lü, J., Zhu, H.:
Finite-time adaptive consensus of a class of multi-agent systems. Science China Technol. Sci. 59 (2016), 1, 22-32.
DOI 10.1007/s11431-015-5989-7
[16] Li, Y., Wu, X., Lu, J., Lü, J.:
Synchronizability of duplex networks. IEEE Trans. Circuits and Systems II - Express Briefs 63 (2016), 2, 206-210.
DOI 10.1109/tcsii.2015.2468924
[17] Lin, W., Pongvuthithum, R.:
Global satbilization of cascade system by ${C}^0$ partial-state feedback. IEEE Trans. Automat. Control 47 (2002), 1356-1362.
DOI 10.1109/tac.2002.800743 |
MR 1917450
[19] Pham, Q. C., Tabareau, N., Slotine, J. J. E.:
A contraction theory appoach to stochastic incremental stability. IEEE Trans. Automat. Control 54 (2009), 4, 816-820.
DOI 10.1109/tac.2008.2009619 |
MR 2514815
[21] Martynyuk, A. A.:
Stability in the models of real world phenomena. Nonlinear Dyn. Syst. Theory 11 (2011), 1, 7-52.
MR 2798814 |
Zbl 1283.70006
[24] Zubov, V. I.:
Methods of A. M. Lyapunov and Their Applications. P. Noordhoff, Groningen, 1964.
MR 0179428