Previous |  Up |  Next

Article

Keywords:
cozero set; $\omega $-open set; Lindelöf; $z$-Lindelöf
Summary:
A topological space $(X, \tau )$ is said to be $z$-Lindelöf  [1] if every cover of $X$ by cozero sets of $(X,\tau )$ admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of $z$-Lindelöf spaces.
References:
[1] Al-Ani, A.T.: $z$-compact spaces. Journal of University of Anbar for Pure Science 3 (1) (2009), 118–121.
[2] Al-Omari, A.: On ideal topological spaces via cozero sets. Questions Answers Gen. Topology 34 (2) (2016), 83–91. MR 3587343 | Zbl 1365.54002
[3] Al-Omari, A.: Some operators in ideal topological spaces via cozero sets. Acta Univ. Apulensis 36 (4) (2016), 1–12. MR 3596204
[4] Al-Omari, A., Noiri, T.: On quasi compact spaces and some functions. accepted in Bol. Soc. Paran. Mat. 36 (4) (2018), 121–130. DOI 10.5269/bspm.v36i4.31125
[5] Bayhan, S., Kanibir, A., McCluskey, A., Reilly, I.L.: On almost $z$-supercontinuity. Filomat 27 (6) (2013), 965–969. DOI 10.2298/FIL1306965B | MR 3244240 | Zbl 1324.54021
[6] Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand Co., Inc., Princeton, N. J., 1960. MR 0116199 | Zbl 0093.30001
[7] Hdeib, H.Z.: $\omega $-closed mappings. Rev. Colombiana Mat. 16 (1–2) (1982), 65–78. MR 0677814 | Zbl 0574.54008
[8] Kohli, J.K., Singh, D., Kumar, R.: Generalizations of $Z$-supercontinuous functions and $D_{\delta }$-supercontinuous functions. Appl. Gen. Topology 9 (2) (2008), 239–251. DOI 10.4995/agt.2008.1804 | MR 2560172 | Zbl 1181.54020
[9] Singal, M.K., Niemse, S.B.: $z$-continuous mappings. Math. Student 66 (1997), 193–210. MR 1626266
Partner of
EuDML logo