[2] Casazza, P.G., Dilworth, S.J., Odell, E., Th.Schlumprecht, , Zsak, A.:
Cofficient quantization for frames in Banach spaces. J. Math. Anal. Appl. 348 (2008), 66–86.
DOI 10.1016/j.jmaa.2008.06.055 |
MR 2449328
[6] Feichtinger, H.G., Grochenig, K.H.:
A unified approach to atomic decompositions via integrable group representations. Lecture Notes in Math., vol. 1302, Springer, 1988, pp. 52–73.
MR 0942257 |
Zbl 0658.22007
[8] Han, D., Larson, D.R.:
Frames, bases and group representations. Mem. Amer. Math. Soc. 147 (2000), 1–91.
MR 1686653 |
Zbl 0971.42023
[10] Kaushik, S.K., Sharma, S.K.: On approximative atomic decompositions in Banach spaces. Communications in Mathematics and Applications 3 (3) (2012), 293–301.
[12] Kaushik, S.K., Sharma, S.K., Poumai, K.T.:
On Schauder frames in conjugate Banach spaces. Journal of Mathematics 2013 (2013), 4 pages, Article ID 318659.
MR 3096803 |
Zbl 1277.46009
[13] Poumai, K.T., Kaushik, S.K.:
Retro Banach frames, almost exact retro Banach frames in Banach spaces. Bulletin Math. Anal. Appl. 7 (1) (2015), 38–48.
MR 3340290
[15] Singer, I.:
Best approximation in normed linear spaces by elements of linear subspaces. Springer-Verlag , New York, Heidelberg, Berlin, 1970.
MR 0270044 |
Zbl 0197.38601
[16] Singer, I.:
Bases in Banach spaces II. Springer-Verlag, New York, Heidelberg, Berlin, 1981.
Zbl 0467.46020