Previous |  Up |  Next

Article

Keywords:
Banach frames; retro Banach frames; approximative Schauder frames
Summary:
A stronger version of the notion of frame in Banach space called Strong Retro Banach frame (SRBF) is defined and studied. It has been proved that if $\mathcal{X}$ is a Banach space such that $\mathcal{X^*}$ has a SRBF, then $\mathcal{X}$ has a Bi-Banach frame with some geometric property. Also, it has been proved that if a Banach space $\mathcal{X}$ has an approximative Schauder frame, then $\mathcal{X^*}$ has a SRBF. Finally, the existence of a non-linear SRBF in the conjugate of a separable Banach space has been proved.
References:
[1] Casazza, P.G.: The art of frame theory. Taiwanese J. Math. 4 (2000), 129–201. DOI 10.11650/twjm/1500407227 | MR 1757401 | Zbl 0966.42022
[2] Casazza, P.G., Dilworth, S.J., Odell, E., Th.Schlumprecht, , Zsak, A.: Cofficient quantization for frames in Banach spaces. J. Math. Anal. Appl. 348 (2008), 66–86. DOI 10.1016/j.jmaa.2008.06.055 | MR 2449328
[3] Casazza, P.G., Han, D., Larson, D.: Frames for Banach spaces. Contemp. Math. 247 (1999), 149–181. DOI 10.1090/conm/247/03801 | MR 1738089 | Zbl 0947.46010
[4] Christensen, O.: Frames and bases (An introductory course). Birkhäuser, Boston, 2008. MR 2428338 | Zbl 1152.42001
[5] Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72 (1952), 341–366. DOI 10.1090/S0002-9947-1952-0047179-6 | MR 0047179 | Zbl 0049.32401
[6] Feichtinger, H.G., Grochenig, K.H.: A unified approach to atomic decompositions via integrable group representations. Lecture Notes in Math., vol. 1302, Springer, 1988, pp. 52–73. MR 0942257 | Zbl 0658.22007
[7] Grochenig, K.H.: Describing functions: Atomic decompositions versus frames. Monatsh. Math. 112 (1991), 1–41. DOI 10.1007/BF01321715 | MR 1122103 | Zbl 0736.42022
[8] Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Amer. Math. Soc. 147 (2000), 1–91. MR 1686653 | Zbl 0971.42023
[9] Jain, P.K., Kaushik, S.K., Vashisht, L.K.: Banach frames for conjugate Banach spaces. Z. Anal. Anwendungen 23 (2004), 713–720. DOI 10.4171/ZAA/1217 | MR 2110399 | Zbl 1059.42024
[10] Kaushik, S.K., Sharma, S.K.: On approximative atomic decompositions in Banach spaces. Communications in Mathematics and Applications 3 (3) (2012), 293–301.
[11] Kaushik, S.K., Sharma, S.K.: Generalized Schauder frames. Arch. Math. (Brno) 50 (2014), 39–49. DOI 10.5817/AM2014-1-39 | MR 3194767 | Zbl 1324.42048
[12] Kaushik, S.K., Sharma, S.K., Poumai, K.T.: On Schauder frames in conjugate Banach spaces. Journal of Mathematics 2013 (2013), 4 pages, Article ID 318659. MR 3096803 | Zbl 1277.46009
[13] Poumai, K.T., Kaushik, S.K.: Retro Banach frames, almost exact retro Banach frames in Banach spaces. Bulletin Math. Anal. Appl. 7 (1) (2015), 38–48. MR 3340290
[14] Sharma, S.K.: On Bi-Banach frames in Banach spaces. Int. J. Wavelets Multiresolut Inf. Process 12 (2) (2014), 10 pages, 1450015. DOI 10.1142/S0219691314500155 | MR 3190066 | Zbl 1290.42061
[15] Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces. Springer-Verlag , New York, Heidelberg, Berlin, 1970. MR 0270044 | Zbl 0197.38601
[16] Singer, I.: Bases in Banach spaces II. Springer-Verlag, New York, Heidelberg, Berlin, 1981. Zbl 0467.46020
[17] Terekhin, P.A.: Frames in Banach spaces. Funct. Anal. Appl. 44 (3) (2010), 199–208. DOI 10.1007/s10688-010-0024-z | MR 2760513 | Zbl 1271.42043
Partner of
EuDML logo