[1] Agrachev, A.A.:
Some open problems. Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, pp. 1–13.
MR 3205092 |
Zbl 1292.49040
[3] Agrachev, A.A., Barilari, D., Rizzi, L.: Curvature: a variational approach. Memoirs of the AMS (in press).
[8] Jean, F.:
Control of nonholonomic systems: from sub-Riemannian geometry to motion planning. SpringerBriefs in Mathematics, Springer, Cham, 2014.
MR 3308372 |
Zbl 1309.93002
[9] Kobayashi, S., Nomizu, K.:
Foundations of differential geometry. Vol. I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996, Reprint of the 1963 original, A Wiley-Interscience Publication.
MR 1393940
[12] Montgomery, R.:
A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs ed., vol. 91, AMS, Providence, RI, 2002.
MR 1867362 |
Zbl 1044.53022
[14] Rizzi, L., Silveira, P.: Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds. ArXiv e-prints, Sept. 2015, J. Inst. Math. Jussieu (in press).