Previous |  Up |  Next

Article

Keywords:
simplicial element; maximum angle condition; interpolation error; higher-dimensional problem; $d$-dimensional sine; semiregular family of simplicial partitions
Summary:
The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in ${\mathbb R}^d$ that degenerate in some way.
References:
[1] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, Teubner, Stuttgart (1999). MR 1716824 | Zbl 0934.65121
[2] Apel, T., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing 47 (1992), 277-293. DOI 10.1007/BF02320197 | MR 1155498 | Zbl 0746.65077
[3] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/0713021 | MR 0455462 | Zbl 0324.65046
[4] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1975), 215-229. DOI 10.1007/BF01399411 | MR 0458000 | Zbl 0304.65076
[5] Bartoš, P.: The sine theorem for simplexes in $E_n$. Cas. Mat. 93 (1968), 273-277 (In Czech). MR 0248604 | Zbl 0162.52302
[6] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227-2233. DOI 10.1016/j.camwa.2007.11.010 | MR 2413688 | Zbl 1142.65443
[7] Brandts, J., Korotov, S., Křížek, M.: On the equivalence of ball conditions for simplicial finite elements in ${\mathbb R}^d$. Appl. Math. Lett. 22 (2009), 1210-1212. DOI 10.1016/j.aml.2009.01.031 | MR 2532540 | Zbl 1173.52301
[8] Brandts, J., Korotov, S., Křížek, M.: Generalization of the Zlámal condition for simplicial finite elements in $\mathbb R^d$. Appl. Math., Praha 56 (2011), 417-424. DOI 10.1007/s10492-011-0024-1 | MR 2833170 | Zbl 1240.65327
[9] Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S.-H.: Sliver exudation. Proc. of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, 1999 ACM, New York (1999), 1-13. DOI 10.1145/304893.304894 | MR 1802189
[10] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). MR 0520174 | Zbl 0383.65058
[11] Edelsbrunner, H.: Triangulations and meshes in computational geometry. Acta Numerica (2000), 133-213. DOI 10.1017/s0962492900001331 | MR 1883628 | Zbl 1004.65024
[12] Eriksson, F.: The law of sines for tetrahedra and $n$-simplices. Geom. Dedicata 7 (1978), 71-80. DOI 10.1007/BF00181352 | MR 0474009 | Zbl 0375.50008
[13] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79-88. DOI 10.1007/s00211-011-0403-2 | MR 2885598 | Zbl 1255.65196
[14] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérées. Rev. Franc. Automat. Inform. Rech. Operat. {\it 10}, Analyse numer., R-1 (1976), 43-60. MR 0455282 | Zbl 0346.65052
[15] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles. Appl. Math., Praha 60 (2015), 485-499. DOI 10.1007/s10492-015-0108-4 | MR 3396477 | Zbl 06486922
[16] Kobayashi, K., Tsuchiya, T.: On the circumradius condition for piecewise linear triangular elements. Japan J. Ind. Appl. Math. 32 (2015), 65-76. DOI 10.1007/s13160-014-0161-5 | MR 3318902 | Zbl 1328.65052
[17] Kobayashi, K., Tsuchiya, T.: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation. Appl. Math., Praha 61 (2016), 121-133. DOI 10.1007/s10492-016-0125-y | MR 3470770 | Zbl 06562150
[18] Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232. MR 1109126 | Zbl 0728.41003
[19] Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513-520. DOI 10.1137/0729031 | MR 1154279 | Zbl 0755.41003
[20] Kučera, V.: A note on necessary and sufficient conditions for convergence of the finite element method. Proc. Conf. Appl. Math. 2015 (J. Brandts et al., eds.) Institute of Mathematics CAS, Prague (2015), 132-139. MR 3700195 | Zbl 1363.65189
[21] Kučera, V.: On necessary and sufficient conditions for finite element convergence. Available at arXiv:1601.02942 (2016). MR 3700195
[22] Kučera, V.: Several notes on the circumradius condition. Appl. Math., Praha 61 (2016), 287-298. DOI 10.1007/s10492-016-0132-z | MR 3502112 | Zbl 06587853
[23] Mao, S., Shi, Z.: Error estimates of triangular finite elements under a weak angle condition. J. Comput. Appl. Math. 230 (2009), 329-331. DOI 10.1016/j.cam.2008.11.008 | MR 2532314 | Zbl 1168.65063
[24] Oswald, P.: Divergence of FEM: Babuška-Aziz triangulations revisited. Appl. Math., Praha 60 (2015), 473-484. DOI 10.1007/s10492-015-0107-5 | MR 3396476 | Zbl 06486921
[25] Rektorys, K.: Survey of Applicable Mathematics. Vol. I. Mathematics and Its Applications 280, Kluwer Academic Publishers, Dordrecht (1994). DOI 10.1007/978-94-015-8308-4 | MR 1282494 | Zbl 0805.00002
[26] Strang, G., Fix, G. J.: An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation, Englewood Cliffs, New Jersey (1973). MR 0443377 | Zbl 356.65096
[27] Synge, J. L.: The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, Cambridge (1957). MR 0097605 | Zbl 0079.13802
[28] Ženíšek, A.: The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 (1969), 355-377 (In Czech). MR 245978 | Zbl 0188.22604
[29] Zlámal, M.: On the finite element method. Numer. Math. 12 (1968), 394-409. DOI 10.1007/BF02161362 | MR 0243753 | Zbl 0176.16001
Partner of
EuDML logo