[1] Apel, T.:
Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics, Teubner, Stuttgart (1999).
MR 1716824 |
Zbl 0934.65121
[5] Bartoš, P.:
The sine theorem for simplexes in $E_n$. Cas. Mat. 93 (1968), 273-277 (In Czech).
MR 0248604 |
Zbl 0162.52302
[9] Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., Teng, S.-H.:
Sliver exudation. Proc. of the Fifteenth Annual Symposium on Computational Geometry, Miami Beach, 1999 ACM, New York (1999), 1-13.
DOI 10.1145/304893.304894 |
MR 1802189
[10] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[14] Jamet, P.:
Estimations d'erreur pour des éléments finis droits presque dégénérées. Rev. Franc. Automat. Inform. Rech. Operat. {\it 10}, Analyse numer., R-1 (1976), 43-60.
MR 0455282 |
Zbl 0346.65052
[18] Křížek, M.:
On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232.
MR 1109126 |
Zbl 0728.41003
[20] Kučera, V.:
A note on necessary and sufficient conditions for convergence of the finite element method. Proc. Conf. Appl. Math. 2015 (J. Brandts et al., eds.) Institute of Mathematics CAS, Prague (2015), 132-139.
MR 3700195 |
Zbl 1363.65189
[21] Kučera, V.:
On necessary and sufficient conditions for finite element convergence. Available at arXiv:1601.02942 (2016).
MR 3700195
[26] Strang, G., Fix, G. J.:
An Analysis of the Finite Element Method. Prentice-Hall Series in Automatic Computation, Englewood Cliffs, New Jersey (1973).
MR 0443377 |
Zbl 356.65096
[27] Synge, J. L.:
The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, Cambridge (1957).
MR 0097605 |
Zbl 0079.13802
[28] Ženíšek, A.:
The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 (1969), 355-377 (In Czech).
MR 245978 |
Zbl 0188.22604