Previous |  Up |  Next

Article

Keywords:
fractional diffusion problem; finite differences; matrix transformation method
Summary:
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on $\mathbb {R}^2$ and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.
References:
[1] Abatangelo, N., Dupaigne, L.: Nonhomogeneous boundary conditions for the spectral fractional Laplacian. To appear in Ann. Inst. Henri Poincaré, Anal. Non. Linéaire (2016). DOI 10.1016/j.anihpc.2016.02.001 | MR 3610940
[2] Bátkai, A., Csomós, P., Farkas, B.: Semigroups for Numerical Analysis. Internet-Seminar Manuscript, 2012, tt{ https://isem-mathematik.uibk.ac.at}
[3] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000), 1403-1412. DOI 10.1029/2000wr900031
[4] Canuto, C., Quarteroni, A.: Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions. Calcolo 18 (1981), 197-217. DOI 10.1007/bf02576357 | MR 0647825 | Zbl 0485.65078
[5] Nezza, E. Di, Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521-573. DOI 10.1016/j.bulsci.2011.12.004 | MR 2944369 | Zbl 1252.46023
[6] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012), 667-696. DOI 10.1137/110833294 | MR 3023366 | Zbl 06122544
[7] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23 (2013), 493-540. DOI 10.1142/S0218202512500546 | MR 3010838 | Zbl 1266.26020
[8] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, G. M. Viswanathan: Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449 (2007), 1044-1048. DOI 10.1038/nature06199 | MR 2550512
[9] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics 194, Springer, Berlin (2000). DOI 10.1007/b97696 | MR 1721989 | Zbl 0952.47036
[10] Feng, L. B., Zhuang, P., Liu, F., Turner, I.: Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation. Appl. Math. Comput. 257 (2015), 52-65. DOI 10.1016/j.amc.2014.12.060 | MR 3320648 | Zbl 1339.65144
[11] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. Academic Press, San Diego (2000). DOI 10.1016/b978-0-12-294757-5.x5000-4 | MR 1773820 | Zbl 0981.65001
[12] Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8 (2005), 323-341. MR 2252038 | Zbl 1126.26009
[13] Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9 (2006), 333-349. MR 2300467 | Zbl 1132.35507
[14] Ilić, M., Turner, I. W., Simpson, D. P.: A restarted Lanczos approximation to functions of a symmetric matrix. IMA J. Numer. Anal. 30 (2010), 1044-1061. DOI 10.1093/imanum/drp003 | MR 2727815 | Zbl 1220.65052
[15] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier, Amsterdam (2006). DOI 10.1016/s0304-0208(06)x8001-5 | MR 2218073 | Zbl 1092.45003
[16] Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62 (2011), 855-875. DOI 10.1016/j.camwa.2011.02.045 | MR 2824676 | Zbl 1228.65190
[17] Liu, F., Zhuang, P., Anh, V., Turner, I.: A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 47 (2005), C48--C68. DOI 10.21914/anziamj.v47i0.1030 | MR 2226522
[18] Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153-192. MR 1829592 | Zbl 1054.35156
[19] Meerschaert, M. M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172 (2004), 65-77. DOI 10.1016/j.cam.2004.01.033 | MR 2091131 | Zbl 1126.76346
[20] Michelitsch, T., Maugin, G., Nowakowski, A., Nicolleau, F., Rahman, M.: The fractional Laplacian as a limiting case of a self-similar spring model and applications to $n$-dimensional anomalous diffusion. Fract. Calc. Appl. Anal. 16 (2013), 827-859. DOI 10.2478/s13540-013-0052-5 | MR 3124339 | Zbl 1314.35209
[21] Nochetto, R. H., Otárola, E., Salgado, A. J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15 (2015), 733-791. DOI 10.1007/s10208-014-9208-x | MR 3348172 | Zbl 1347.65178
[22] Pasciak, J. E.: Spectral and pseudo spectral methods for advection equations. Math. Comput. 35 (1980), 1081-1092. DOI 10.2307/2006376 | MR 583488 | Zbl 0448.65071
[23] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). DOI 10.1016/s0076-5392(99)x8001-5 | MR 1658022 | Zbl 0924.34008
[24] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993). MR 1347689 | Zbl 0818.26003
[25] Szekeres, B. J., Izsák, F.: A finite difference method for fractional diffusion equations with Neumann boundary conditions. Open Math. (electronic only) 13 (2015), 581-600. DOI 10.1515/math-2015-0056 | MR 3403508 | Zbl 06632236
[26] Szekeres, B. J., Izsák, F.: Finite element approximation of fractional order elliptic boundary value problems. J. Comput. Appl. Math. 292 (2016), 553-561. DOI 10.1016/j.cam.2015.07.026 | MR 3392412 | Zbl 1327.65215
[27] Tadjeran, C., Meerschaert, M. M., Scheffler, H.-P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213 (2006), 205-213. DOI 10.1016/j.jcp.2005.08.008 | MR 2203439 | Zbl 1089.65089
[28] Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84 (2015), 1703-1727. DOI 10.1090/S0025-5718-2015-02917-2 | MR 3335888 | Zbl 1318.65058
[29] Yang, Q., Turner, I., Moroney, T., Liu, F.: A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations. Appl. Math. Model. 38 (2014), 3755-3762. DOI 10.1016/j.apm.2014.02.005 | MR 3233804
[30] Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56 (2013), 45-66. DOI 10.1007/s10915-012-9661-0 | MR 3049942 | Zbl 1278.65130
Partner of
EuDML logo