[1] Abatangelo, N., Dupaigne, L.:
Nonhomogeneous boundary conditions for the spectral fractional Laplacian. To appear in Ann. Inst. Henri Poincaré, Anal. Non. Linéaire (2016).
DOI 10.1016/j.anihpc.2016.02.001 |
MR 3610940
[3] Benson, D. A., Wheatcraft, S. W., Meerschaert, M. M.:
Application of a fractional advection-dispersion equation. Water Resour. Res. 36 (2000), 1403-1412.
DOI 10.1029/2000wr900031
[6] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K.:
Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54 (2012), 667-696.
DOI 10.1137/110833294 |
MR 3023366 |
Zbl 06122544
[7] Du, Q., Gunzburger, M., Lehoucq, R. B., Zhou, K.:
A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23 (2013), 493-540.
DOI 10.1142/S0218202512500546 |
MR 3010838 |
Zbl 1266.26020
[8] A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, G. M. Viswanathan:
Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449 (2007), 1044-1048.
DOI 10.1038/nature06199 |
MR 2550512
[12] Ilic, M., Liu, F., Turner, I., Anh, V.:
Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8 (2005), 323-341.
MR 2252038 |
Zbl 1126.26009
[13] Ilic, M., Liu, F., Turner, I., Anh, V.:
Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal. 9 (2006), 333-349.
MR 2300467 |
Zbl 1132.35507
[17] Liu, F., Zhuang, P., Anh, V., Turner, I.:
A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM J. 47 (2005), C48--C68.
DOI 10.21914/anziamj.v47i0.1030 |
MR 2226522
[18] Mainardi, F., Luchko, Y., Pagnini, G.:
The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4 (2001), 153-192.
MR 1829592 |
Zbl 1054.35156
[20] Michelitsch, T., Maugin, G., Nowakowski, A., Nicolleau, F., Rahman, M.:
The fractional Laplacian as a limiting case of a self-similar spring model and applications to $n$-dimensional anomalous diffusion. Fract. Calc. Appl. Anal. 16 (2013), 827-859.
DOI 10.2478/s13540-013-0052-5 |
MR 3124339 |
Zbl 1314.35209
[23] Podlubny, I.:
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications. Mathematics in Science and Engineering 198, Academic Press, San Diego (1999).
DOI 10.1016/s0076-5392(99)x8001-5 |
MR 1658022 |
Zbl 0924.34008
[24] Samko, S. G., Kilbas, A. A., Marichev, O. I.:
Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993).
MR 1347689 |
Zbl 0818.26003
[29] Yang, Q., Turner, I., Moroney, T., Liu, F.:
A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations. Appl. Math. Model. 38 (2014), 3755-3762.
DOI 10.1016/j.apm.2014.02.005 |
MR 3233804